Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Antennal fine morphology of the threatened beetle Osmoderma eremita (Coleoptera: Scarabaeidae), revealed by scanning electron microscopy"    Next AbstractAtmospheric hydrocarbon emissions and concentrations in the barnett shale natural gas production region »

PLoS One


Title:Competition-based model of pheromone component ratio detection in the moth
Author(s):Zavada A; Buckley CL; Martinez D; Rospars JP; Nowotny T;
Address:"Informatics, University of Sussex, Brighton, United Kingdom"
Journal Title:PLoS One
Year:2011
Volume:20110216
Issue:2
Page Number:e16308 -
DOI: 10.1371/journal.pone.0016308
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"For some moth species, especially those closely interrelated and sympatric, recognizing a specific pheromone component concentration ratio is essential for males to successfully locate conspecific females. We propose and determine the properties of a minimalist competition-based feed-forward neuronal model capable of detecting a certain ratio of pheromone components independently of overall concentration. This model represents an elementary recognition unit for the ratio of binary mixtures which we propose is entirely contained in the macroglomerular complex (MGC) of the male moth. A set of such units, along with projection neurons (PNs), can provide the input to higher brain centres. We found that (1) accuracy is mainly achieved by maintaining a certain ratio of connection strengths between olfactory receptor neurons (ORN) and local neurons (LN), much less by properties of the interconnections between the competing LNs proper. An exception to this rule is that it is beneficial if connections between generalist LNs (i.e. excited by either pheromone component) and specialist LNs (i.e. excited by one component only) have the same strength as the reciprocal specialist to generalist connections. (2) successful ratio recognition is achieved using latency-to-first-spike in the LN populations which, in contrast to expectations with a population rate code, leads to a broadening of responses for higher overall concentrations consistent with experimental observations. (3) when longer durations of the competition between LNs were observed it did not lead to higher recognition accuracy"
Keywords:"Animal Communication Animals Brain/physiology Female Male Models, Biological *Models, Neurological Moths/metabolism/*physiology Nerve Net/metabolism/*physiology Neurons/physiology Olfactory Pathways/physiology Olfactory Perception/physiology Olfactory Rec;"
Notes:"MedlineZavada, Andrei Buckley, Christopher L Martinez, Dominique Rospars, Jean-Pierre Nowotny, Thomas eng BB/F005113/1/Biotechnology and Biological Sciences Research Council/United Kingdom Research Support, Non-U.S. Gov't 2011/03/05 PLoS One. 2011 Feb 16; 6(2):e16308. doi: 10.1371/journal.pone.0016308"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024