Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractConifer Monoterpene Chemistry during an Outbreak Enhances Consumption and Immune Response of an Eruptive Folivore    Next AbstractMass-sensitive detection of gas-phase volatile organics using disk microresonators »

PLoS One


Title:Herbivory induced methylation changes in the Lombardy poplar: A comparison of results obtained by epiGBS and WGBS
Author(s):Troyee AN; Pena-Ponton C; Medrano M; Verhoeven KJF; Alonso C;
Address:"Estacion Biologica de Donana, Consejo Superior de Investigaciones Cientificas (CSIC), Sevilla, Spain. Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands"
Journal Title:PLoS One
Year:2023
Volume:20230908
Issue:9
Page Number:e0291202 -
DOI: 10.1371/journal.pone.0291202
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"DNA cytosine methylation is an epigenetic mechanism involved in regulation of plant responses to biotic and abiotic stress and its ability to change can vary with the sequence context in which a cytosine appears (CpG, CHG, CHH, where H = Adenine, Thymine, Cytosine). Quantification of DNA methylation in model plant species is frequently addressed by Whole Genome Bisulfite Sequencing (WGBS), which requires a good-quality reference genome. Reduced Representation Bisulfite Sequencing (RRBS) is a cost-effective potential alternative for ecological research with limited genomic resources and large experimental designs. In this study, we provide for the first time a comprehensive comparison between the outputs of RRBS and WGBS to characterize DNA methylation changes in response to a given environmental factor. In particular, we used epiGBS (recently optimized RRBS) and WGBS to assess global and sequence-specific differential methylation after insect and artificial herbivory in clones of Populus nigra cv. 'italica'. We found that, after any of the two herbivory treatments, global methylation percentage increased in CHH, and the shift was detected as statistically significant only by epiGBS. As regards to loci-specific differential methylation induced by herbivory (cytosines in epiGBS and regions in WGBS), both techniques indicated the specificity of the response elicited by insect and artificial herbivory, together with higher frequency of hypo-methylation in CpG and hyper-methylation in CHH. Methylation changes were mainly found in gene bodies and intergenic regions when present at CpG and CHG and in transposable elements and intergenic regions at CHH context. Thus, epiGBS succeeded to characterize global, genome-wide methylation changes in response to herbivory in the Lombardy poplar. Our results support that epiGBS could be particularly useful in large experimental designs aimed to explore epigenetic changes of non-model plant species in response to multiple environmental factors"
Keywords:"*Herbivory *Populus/genetics DNA Methylation Cytosine DNA, Intergenic;"
Notes:"MedlineTroyee, A Niloya Pena-Ponton, Cristian Medrano, Monica Verhoeven, Koen J F Alonso, Conchita eng Research Support, Non-U.S. Gov't 2023/09/08 PLoS One. 2023 Sep 8; 18(9):e0291202. doi: 10.1371/journal.pone.0291202. eCollection 2023"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024