Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractLarval digestion of different manure types by the black soldier fly (Diptera: Stratiomyidae) impacts associated volatile emissions    Next AbstractNanoplastic affects growth of S. obliquus and reproduction of D. magna »

Appl Sci (Basel)


Title:Emissions of Carbonaceous Particulate Matter and Ultrafine Particles from Vehicles-A Scientific Review in a Cross-Cutting Context of Air Pollution and Climate Change
Author(s):Bessagnet B; Allemand N; Putaud JP; Couvidat F; Andre JM; Simpson D; Pisoni E; Murphy BN; Thunis P;
Address:"Joint Research Centre, European Commission, 21027 Ispra, Italy. Citepa, 42 Rue de Paradis, 75010 Paris, France. INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France. EMEP MSC-W, Norwegian Meteorological Institute, 0313 Oslo, Norway. Department Space, Earth & Environment, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden. Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA"
Journal Title:Appl Sci (Basel)
Year:2022
Volume:12
Issue:7
Page Number:1 - 52
DOI: 10.3390/app12073623
ISSN/ISBN:2076-3417 (Print) 2076-3417 (Electronic) 2076-3417 (Linking)
Abstract:"Airborne particulate matter (PM) is a pollutant of concern not only because of its adverse effects on human health but also on visibility and the radiative budget of the atmosphere. PM can be considered as a sum of solid/liquid species covering a wide range of particle sizes with diverse chemical composition. Organic aerosols may be emitted (primary organic aerosols, POA), or formed in the atmosphere following reaction of volatile organic compounds (secondary organic aerosols, SOA), but some of these compounds may partition between the gas and aerosol phases depending upon ambient conditions. This review focuses on carbonaceous PM and gaseous precursors emitted by road traffic, including ultrafine particles (UFP) and polycyclic aromatic hydrocarbons (PAHs) that are clearly linked to the evolution and formation of carbonaceous species. Clearly, the solid fraction of PM has been reduced during the last two decades, with the implementation of after-treatment systems abating approximately 99% of primary solid particle mass concentrations. However, the role of brown carbon and its radiative effect on climate and the generation of ultrafine particles by nucleation of organic vapour during the dilution of the exhaust remain unclear phenomena and will need further investigation. The increasing role of gasoline vehicles on carbonaceous particle emissions and formation is also highlighted, particularly through the chemical and thermodynamic evolution of organic gases and their propensity to produce particles. The remaining carbon-containing particles from brakes, tyres and road wear will still be a problem even in a future of full electrification of the vehicle fleet. Some key conclusions and recommendations are also proposed to support the decision makers in view of the next regulations on vehicle emissions worldwide"
Keywords:Ivoc Pah Svoc air quality black carbon brown carbon climate emissions organics vehicles;
Notes:"PubMed-not-MEDLINEBessagnet, Bertrand Allemand, Nadine Putaud, Jean-Philippe Couvidat, Florian Andre, Jean-Marc Simpson, David Pisoni, Enrico Murphy, Benjamin N Thunis, Philippe eng EPA999999/ImEPA/Intramural EPA/ Switzerland 2022/05/10 Appl Sci (Basel). 2022 Apr 2; 12(7):1-52. doi: 10.3390/app12073623"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024