Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractMacroalgal extracts induce bacterial assemblage shifts and sublethal tissue stress in Caribbean corals    Next AbstractAldehyde Pheromones in Lepidoptera: Evidence for an Acetate Ester Precursor in Choristoneura fumiferana »

Appl Environ Microbiol


Title:"Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance"
Author(s):Morrow KM; Bromhall K; Motti CA; Munn CB; Bourne DG;
Address:"Australian Institute of Marine Science, Townsville, QLD, Australia morrow.kathleen@gmail.com. Australian Institute of Marine Science, Townsville, QLD, Australia. School of Marine Science and Engineering, Plymouth University, Plymouth, United Kingdom. College of Science and Engineering, James Cook University, Townsville, QLD, Australia"
Journal Title:Appl Environ Microbiol
Year:2017
Volume:20161215
Issue:1
Page Number: -
DOI: 10.1128/AEM.02391-16
ISSN/ISBN:1098-5336 (Electronic) 0099-2240 (Print) 0099-2240 (Linking)
Abstract:"Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (<0.3 mg . ml(-1)) than calculated natural concentrations (4.4 mg . ml(-1)). Microbial communities associated with coral tissues exposed to aqueous (e.g., hydrophilic) crude extracts demonstrated a significant shift to Vibrio dominance and a loss of sequences related to the putative coral bacterial symbiont, Endozoicomonas sp., based on 16S rRNA amplicon sequencing. This study contributes to growing evidence that macroalgal allelochemicals, dissolved organic material, and native macroalgal microbial assemblages all play a role in shifting the microbial equilibrium of the coral holobiont away from a beneficial state, contributing to a decline in coral fitness and a shift in ecosystem structure. IMPORTANCE: Diverse microbial communities associate with coral tissues and mucus, providing important protective and nutritional services, but once disturbed, the microbial equilibrium may shift from a beneficial state to one that is detrimental or pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure"
Keywords:Animals Anthozoa/drug effects/*microbiology Archaea/drug effects/genetics/growth & development/isolation & purification Bacteria/drug effects/genetics/growth & development/pathogenicity Coral Reefs Ecosystem Larva/drug effects Metagenomics Microbial Conso;
Notes:"MedlineMorrow, Kathleen M Bromhall, Katrina Motti, Cherie A Munn, Colin B Bourne, David G eng Research Support, Non-U.S. Gov't 2016/11/01 Appl Environ Microbiol. 2016 Dec 15; 83(1):e02391-16. doi: 10.1128/AEM.02391-16. Print 2017 Jan 1"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024