Title: | Fully Automated Online Dynamic In-Tube Extraction for Continuous Sampling of Volatile Organic Compounds in Air |
Author(s): | Lan H; Holopainen J; Hartonen K; Jussila M; Ritala M; Riekkola ML; |
Address: | "Department of Chemistry , University of Helsinki , P.O. Box 55, 00014 Helsinki , Finland. Institute for Atmospheric and Earth System Research , University of Helsinki , P.O. Box 64, 00014 Helsinki , Finland" |
DOI: | 10.1021/acs.analchem.9b01668 |
ISSN/ISBN: | 1520-6882 (Electronic) 0003-2700 (Print) 0003-2700 (Linking) |
Abstract: | "Comprehensive and time-dependent information (e.g., chemical composition, concentration) of volatile organic compounds (VOCs) in atmospheric, indoor, and breath air is essential to understand the fundamental science of the atmosphere, air quality, and diseases diagnostic. Here, we introduced a fully automated online dynamic in-tube extraction (ITEX)-gas chromatography/mass spectrometry (GC/MS) method for continuous and quantitative monitoring of VOCs in air. In this approach, modified Cycle Composer software and a PAL autosampler controlled and operated the ITEX preconditioning, internal standard (ISTD) addition, air sampling, and ITEX desorption sequentially to enable full automation. Air flow passed through the ITEX with the help of an external pump, instead of plunger up-down strokes, to allow larger sampling volumes, exhaustive extraction, and consequently lower detection limits. Further, in order to evaluate the ITEX system stability and to develop the corresponding quantitative ITEX method, two laboratory-made permeation systems (for standard VOCs and ISTD) were constructed. The stability and suitability of the developed system was validated with a consecutive 19 day atmospheric air campaign under automation. By using an electrospun polyacrylonitrile nanofibers packed ITEX, selective extraction of some VOCs and durability of over 1500 extraction and desorption cycles were achieved. Especially, the latter step is critically important for on-site long-term application at remote regions. This ITEX method provided 2-3 magnitudes lower quantitation limits than the headspace dynamic ITEX method and other needle trap methods. Our results proved the excellence of the fully automated online dynamic ITEX-GC/MS system for tracking VOCs in the atmospheric air" |
Keywords: | Air Pollutants/*analysis Automation Chemical Fractionation/*methods Gas Chromatography-Mass Spectrometry/*methods Limit of Detection Volatile Organic Compounds/*analysis; |
Notes: | "MedlineLan, Hangzhen Holopainen, Jani Hartonen, Kari Jussila, Matti Ritala, Mikko Riekkola, Marja-Liisa eng Research Support, Non-U.S. Gov't 2019/06/30 Anal Chem. 2019 Jul 2; 91(13):8507-8515. doi: 10.1021/acs.analchem.9b01668. Epub 2019 Jun 19" |