Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractBreath analysis during one-lung ventilation in cancer patients    Next Abstract[New Scientific Evidence-based Public Health Guidelines and Practical Manual for Prevention of Sick House Syndrome] »

Front Biosci (Landmark Ed)


Title:The integrative function of TRPC channels
Author(s):Kiselyov K; Patterson RL;
Address:"Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA. kiselyov@pitt.edu"
Journal Title:Front Biosci (Landmark Ed)
Year:2009
Volume:20090101
Issue:1
Page Number:45 - 58
DOI: 10.2741/3230
ISSN/ISBN:2768-6698 (Electronic) 2768-6698 (Linking)
Abstract:"TRPC is a subfamily of Transient Receptor Potential channels that have the highest degree of homology to the Drosophila photoreceptors' TRP. TRPC open in response to stimulation of plasma membrane receptors that activate phospholipase C, triggering transmembrane Ca2+ influx. TRPC activity has been directly implicated in regulation of vascular tone, kidney filtration, acrosomal reaction and pheromone recognition. As humans contain six TRPC channels, which form homo- and hetero-tetramers, TRPCs are capable of forming multiple channels of varying current/voltage relationships and activation properties. This allows TRPC to participate in an array of intercellular pathways induced by chemical mediators including hormones, neurotransmitters and growth factors. The strength of TRPC response to stimulation is modulated by several factors such as covalent modification, interaction with auxiliary proteins and changes in the lipid environment. The existence of several modulatory inputs that converge on TRPC enables integration of various stimuli and differentiation of Ca2+ signaling in specific tissues. This synthesizes the current literature describing the known functions and phenomenology associated with TRPC channels, with a specific focus on the activation and modulatory mechanisms. We suggest that the polymodal regulation of TRPC channels is likely to explain many specific aspects of TRPC behavior in different tissues"
Keywords:"Animals Calcium/metabolism Humans Mechanotransduction, Cellular TRPC Cation Channels/drug effects/metabolism/*physiology;"
Notes:"MedlineKiselyov, Kirill Patterson, Randen L eng Review Singapore 2009/03/11 Front Biosci (Landmark Ed). 2009 Jan 1; 14(1):45-58. doi: 10.2741/3230"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-01-2025