Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractCalbindin D28K immunoreactive neurons in vomeronasal organ and their projections to the accessory olfactory bulb in the rat    Next AbstractJoint action of benzoxazinone derivatives and phenolic acids »

J Environ Monit


Title:Development and comparison of methods using MS scan and selective ion monitoring modes for a wide range of airborne VOCs
Author(s):Jia C; Batterman S; Chernyak S;
Address:"Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109-2029, USA"
Journal Title:J Environ Monit
Year:2006
Volume:8
Issue:10
Page Number:1029 - 1042
DOI: 10.1039/b607042f
ISSN/ISBN:1464-0325 (Print) 1464-0325 (Linking)
Abstract:"Adsorbent sampling with analysis by thermal desorption, gas chromatography and mass spectrometry (TD/GC/MS) offers many advantages for volatile organic compounds (VOCs) and thus is increasingly used in many applications. For environmental samples and other complex mixtures, the MS detector typically is operated in the scan mode to aid identification of co-eluting compounds. However, scan mode does not achieve the optimal sensitivity, thus compounds occurring at low concentrations may not be detected. This paper develops and evaluates the application of a more sensitive TD/GC/MS method using selective ion monitoring (SIM) that is applicable to VOC mixtures found in ambient and indoor air. Based on toxicity and prevalence, 94 VOCs (including terpenes, aromatic, halogenated and aliphatic compounds) were selected as target compounds. Two analytical methods were developed: a conventional full scan method for ions from 29 to 270 m/z; and a SIM method using 16 time windows and different ions selected for the compounds in each window. Both methods used the same Tenax GR adsorbent sampling tubes, TD and GC parameters, and target and qualifier ions. Laboratory tests determined calibrations, method detection limits (MDLs), precisions, recoveries and storage stability. Field tests compared scan and SIM mode analyses for duplicate samples of indoor air in 51 houses and outdoor air at 41 sites. Statistical analyses included the development of error/precision models. The laboratory tests showed that most compounds demonstrated excellent precision (<10% for concentrations exceeding approximately 0.5 microg m(-3)), good linearity, near identical calibrations for scan and SIM modes, a wide dynamic range (up to 1500 microg m(-3)), and negligible storage losses after 1 month (7 compounds showed moderate losses). SIM mode MDLs ranged from 0.004 to 0.27 microg m(-3), representing a modest (1.1 to 22-fold) improvement compared to scan mode. However, in field tests the SIM method detected significantly more compounds (e.g., styrene and chloroform). Error models fit most compounds and allow quantification of errors at selected percentiles. Overall, while the new SIM method is somewhat time-consuming to develop, it offers greater sensitivity and maintains the high selectivity of traditional scan methods"
Keywords:"Adsorption Air Pollutants/*analysis Air Pollution, Indoor/analysis Environmental Monitoring/*methods Gas Chromatography-Mass Spectrometry Hot Temperature Organic Chemicals/analysis Volatilization;"
Notes:"MedlineJia, Chunrong Batterman, Stuart Chernyak, Sergei eng R01-OH03692-06/OH/NIOSH CDC HHS/ Evaluation Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S. England 2007/01/24 J Environ Monit. 2006 Oct; 8(10):1029-42. doi: 10.1039/b607042f"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024