Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractA Codling Moth (Lepidoptera: Tortricidae) Kairomonal Lure Is Marginally Effective at Decreasing Fruit Damage in Apple Trees Outside of Orchard Settings    Next Abstract"Isolation and identification of a compound from soybean cyst nematode,Heterodera glycines, with sex pheromone activity" »

Environ Sci Technol


Title:Impact of wildfires on ozone exceptional events in the Western u.s
Author(s):Jaffe DA; Wigder N; Downey N; Pfister G; Boynard A; Reid SB;
Address:"School of Science and Technology, University of Washington-Bothell , Bothell, Washington 98011, United States"
Journal Title:Environ Sci Technol
Year:2013
Volume:20130913
Issue:19
Page Number:11065 - 11072
DOI: 10.1021/es402164f
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Linking)
Abstract:"Wildfires generate substantial emissions of nitrogen oxides (NOx) and volatile organic compounds (VOCs). As such, wildfires contribute to elevated ozone (O3) in the atmosphere. However, there is a large amount of variability in the emissions of O3 precursors and the amount of O3 produced between fires. There is also significant interannual variability as seen in median O3, organic carbon and satellite derived carbon monoxide mixing ratios in the western U.S. To better understand O3 produced from wildfires, we developed a statistical model that estimates the maximum daily 8 h average (MDA8) O3 as a function of several meteorological and temporal variables for three urban areas in the western U.S.: Salt Lake City, UT; Boise, ID; and Reno, NV. The model is developed using data from June-September 2000-2012. For these three locations, the statistical model can explain 60, 52, and 27% of the variability in daily MDA8. The Statistical Model Residual (SMR) can give information on additional sources of O3 that are not explained by the usual meteorological pattern. Several possible O3 sources can explain high SMR values on any given day. We examine several cases with high SMR that are due to wildfire influence. The first case considered is for Reno in June 2008 when the MDA8 reached 82 ppbv. The wildfire influence for this episode is supported by PM concentrations, the known location of wildfires at the time and simulations with the Weather and Research Forecasting Model with Chemistry (WRF-Chem) which indicates transport to Reno from large fires burning in California. The contribution to the MDA8 in Reno from the California wildfires is estimated to be 26 ppbv, based on the SMR, and 60 ppbv, based on WRF-Chem. The WRF-Chem model also indicates an important role for peroxyacetyl nitrate (PAN) in producing O3 during transport from the California wildfires. We hypothesize that enhancements in PAN due to wildfire emissions may lead to regional enhancements in O3 during high fire years. The second case is for the Salt Lake City (SLC) region for August 2012. During this period the MDA8 reached 83 ppbv and the SMR suggests a wildfire contribution of 19 ppbv to the MDA8. The wildfire influence is supported by PM2.5 data, the known location of wildfires at the time, HYSPLIT dispersion modeling that indicates transport from fires in Idaho, and results from the CMAQ model that confirm the fire impacts. Concentrations of PM2.5 and O3 are enhanced during this period, but overall there is a poor relationship between them, which is consistent with the complexities in the secondary production of O3. A third case looks at high MDA8 in Boise, ID, during July 2012 and reaches similar conclusions. These results support the use of statistical modeling as a tool to quantify the influence from wildfires on urban O3 concentrations"
Keywords:"Air Pollutants/*analysis Cities *Fires Idaho *Models, Statistical Nevada Ozone/*analysis Utah;"
Notes:"MedlineJaffe, Daniel A Wigder, Nicole Downey, Nicole Pfister, Gabriele Boynard, Anne Reid, Stephen B eng 2013/08/29 Environ Sci Technol. 2013 Oct 1; 47(19):11065-72. doi: 10.1021/es402164f. Epub 2013 Sep 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024