Title: | Genetic analysis of biosurfactant production in Ustilago maydis |
Author(s): | Hewald S; Josephs K; Bolker M; |
Address: | "Philipps-Universitat Marburg, Fachbereich Biologie, 35032 Marburg, Germany. marburg.de" |
DOI: | 10.1128/AEM.71.6.3033-3040.2005 |
ISSN/ISBN: | 0099-2240 (Print) 1098-5336 (Electronic) 0099-2240 (Linking) |
Abstract: | "The dimorphic basidiomycete Ustilago maydis produces large amounts of surface-active compounds under conditions of nitrogen starvation. These biosurfactants consist of derivatives of two classes of amphipathic glycolipids. Ustilagic acids are cellobiose lipids in which the disaccharide is O-glycosidically linked to 15,16-dihydroxyhexadecanoic acid. Ustilipids are mannosylerythritol lipids derived from acylated beta-d-mannopyranosyl-d-erythritol. Whereas the chemical structure of these biosurfactants has been determined, the genetic basis for their biosynthesis and regulation is largely unknown. Here we report the first identification of two genes, emt1 and cyp1, that are essential for the production of fungal extracellular glycolipids. emt1 is required for mannosylerythritol lipid production and codes for a protein with similarity to prokaryotic glycosyltransferases involved in the biosynthesis of macrolide antibiotics. We suggest that Emt1 catalyzes the synthesis of mannosyl-d-erythritol by transfer of GDP-mannose. Deletion of the gene cyp1 resulted in complete loss of ustilagic acid production. Cyp1 encodes a cytochrome P450 monooxygenase which is highly related to a family of plant fatty acid hydroxylases. Therefore we assume that Cyp1 is directly involved in the biosynthesis of the unusual 15,16-dihydroxyhexadecanoic acid. We could show that mannosylerythritol lipid production is responsible for hemolytic activity on blood agar, whereas ustilagic acid secretion is required for long-range pheromone recognition. The mutants described here allow for the first time a genetic analysis of glycolipid production in fungi" |
Keywords: | "Amino Acid Sequence Cytochrome P-450 Enzyme System/genetics/metabolism Fungal Proteins/*genetics/metabolism *Gene Expression Regulation, Fungal Glycolipids/*biosynthesis Glycosyltransferases/chemistry/genetics/metabolism Hemolysis Mixed Function Oxygenase;" |
Notes: | "MedlineHewald, Sandra Josephs, Katharina Bolker, Michael eng Research Support, Non-U.S. Gov't 2005/06/04 Appl Environ Microbiol. 2005 Jun; 71(6):3033-40. doi: 10.1128/AEM.71.6.3033-3040.2005" |