Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractKey role of microbial characteristics on the performance of VOC biodegradation in two-liquid phase bioreactors    Next AbstractInhibition of sex pheromone production in female lepidopteran moths by 2-halofatty acids »

Waste Manag


Title:Changes in organic matter composition during composting of two digested sewage sludges
Author(s):Hernandez T; Masciandaro G; Moreno JI; Garcia C;
Address:"Department of Soil and Water Conservation and Waste Management, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), P.O. Box 164, 30100 Espinardo-Murcia, Spain. mthernan@cebas.csic.es"
Journal Title:Waste Manag
Year:2006
Volume:20051213
Issue:12
Page Number:1370 - 1376
DOI: 10.1016/j.wasman.2005.10.006
ISSN/ISBN:0956-053X (Print) 0956-053X (Linking)
Abstract:"Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process"
Keywords:Aerobiosis Anaerobiosis Humic Substances/analysis Organic Chemicals/*analysis/chemistry Sewage/*analysis/chemistry/microbiology;
Notes:"MedlineHernandez, T Masciandaro, G Moreno, J I Garcia, C eng Research Support, Non-U.S. Gov't 2005/12/17 Waste Manag. 2006; 26(12):1370-6. doi: 10.1016/j.wasman.2005.10.006. Epub 2005 Dec 13"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-06-2024