Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractReceptor for detection of a Type II sex pheromone in the winter moth Operophtera brumata    Next AbstractOptimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants »

Environ Sci Technol


Title:Pyrolysis Treatment of Chromite Ore Processing Residue by Biomass: Cellulose Pyrolysis and Cr(VI) Reduction Behavior
Author(s):Zhang DL; Zhang MY; Zhang CH; Sun YJ; Sun X; Yuan XZ;
Address:"School of Environmental and Municipal Engineering, Qingdao Technological University , Qingdao, Shandong Province 266033 P. R. China. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences , Beijing, 100085, P. R. China. Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao, Shandong Province 266101, P. R. China"
Journal Title:Environ Sci Technol
Year:2016
Volume:20160225
Issue:6
Page Number:3111 - 3118
DOI: 10.1021/acs.est.5b05707
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Linking)
Abstract:"The pyrolysis treatment with biomass is a promising technology for the remediation of chromite-ore-processing residue (COPR). However, the mechanism of this process is still unclear. In this study, the behavior of pyrolysis reduction of Cr(VI) by cellulose, the main component of biomass, was elucidated. The results showed that the volatile fraction (VF) of cellulose, ie. gas and tar, was responsible for Cr(VI) reduction. All organic compounds, as well as CO and H2 in VF, potentially reduced Cr(VI). X-ray absorption near-edge structure (XANES) spectroscopy and extended X-ray absorption fine-structure (EXAFS) spectroscopy confirmed the reduction of Cr(VI) to Cr(III) and the formation of amorphous Cr2O3. The remnant Cr(VI) content in COPR can be reduced below the detection limit (2 mg/kg) by the reduction of COPR particle and extension of reaction time between VF and COPR. This study provided a deep insight on the co-pyrolysis of cellulose with Cr(VI) in COPR and an ideal approach by which to characterize and optimize the pyrolysis treatment for COPR by other organics"
Keywords:Biomass Cellulose/*chemistry Chromium/*chemistry *Industrial Waste Metallurgy/*methods Oxidation-Reduction X-Ray Absorption Spectroscopy;
Notes:"MedlineZhang, Da-Lei Zhang, Mei-Yi Zhang, Chu-Hui Sun, Ying-Jie Sun, Xiao Yuan, Xian-Zheng eng Research Support, Non-U.S. Gov't 2016/02/11 Environ Sci Technol. 2016 Mar 15; 50(6):3111-8. doi: 10.1021/acs.est.5b05707. Epub 2016 Feb 25"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-12-2024