Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractOptimized Method for Determination 57 Volatile Organic Compounds in Nitrogen Using GC x GC-FID    Next AbstractPotential inhibitory effect of carbon dioxide on the spoilage behaviors of Pseudomonas fragi in high-oxygen packaged beef during refrigerated storage »

Sensors (Basel)


Title:SCD: A Stacked Carton Dataset for Detection and Segmentation
Author(s):Yang J; Wu S; Gou L; Yu H; Lin C; Wang J; Wang P; Li M; Li X;
Address:"State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China. Faculty of Arts and Science, Queen's University, Kingston, ON K7L 3N6, Canada"
Journal Title:Sensors (Basel)
Year:2022
Volume:20220510
Issue:10
Page Number: -
DOI: 10.3390/s22103617
ISSN/ISBN:1424-8220 (Electronic) 1424-8220 (Linking)
Abstract:"Carton detection is an important technique in the automatic logistics system and can be applied to many applications such as the stacking and unstacking of cartons and the unloading of cartons in the containers. However, there is no public large-scale carton dataset for the research community to train and evaluate the carton detection models up to now, which hinders the development of carton detection. In this article, we present a large-scale carton dataset named Stacked Carton Dataset (SCD) with the goal of advancing the state-of-the-art in carton detection. Images were collected from the Internet and several warehouses, and objects were labeled for precise localization using instance mask annotation. There were a total of 250,000 instance masks from 16,136 images. Naturally, a suite of benchmarks was established with several popular detectors and instance segmentation models. In addition, we designed a carton detector based on RetinaNet by embedding our proposed Offset Prediction between the Classification and Localization module (OPCL) and the Boundary Guided Supervision module (BGS). OPCL alleviates the imbalance problem between classification and localization quality, which boosts AP by 3.1 approximately 4.7% on SCD at the model level, while BGS guides the detector to pay more attention to the boundary information of cartons and decouple repeated carton textures at the task level. To demonstrate the generalization of OPCL for other datasets, we conducted extensive experiments on MS COCO and PASCAL VOC. The improvements in AP on MS COCO and PASCAL VOC were 1.8 approximately 2.2% and 3.4 approximately 4.3%, respectively"
Keywords:*Volatile Organic Compounds larger-scale dataset object detection stacked carton;
Notes:"MedlineYang, Jinrong Wu, Shengkai Gou, Lijun Yu, Hangcheng Lin, Chenxi Wang, Jiazhuo Wang, Pan Li, Minxuan Li, Xiaoping eng Switzerland 2022/05/29 Sensors (Basel). 2022 May 10; 22(10):3617. doi: 10.3390/s22103617"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-12-2024