Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractPredicting room vapor concentrations due to spills of organic solvents    Next Abstract"Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata" »

Front Plant Sci


Title:The Terpene Synthase Gene Family of Carrot (Daucus carota L.): Identification of QTLs and Candidate Genes Associated with Terpenoid Volatile Compounds
Author(s):Keilwagen J; Lehnert H; Berner T; Budahn H; Nothnagel T; Ulrich D; Dunemann F;
Address:"Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Julius Kuhn-Institut, Quedlinburg, Germany. Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Horticultural Crops, Julius Kuhn-Institut, Quedlinburg, Germany. Federal Research Centre for Cultivated Plants, Institute for Ecological Chemistry, Plant Analysis and Stored Product Protection, Julius Kuhn-Institut, Quedlinburg, Germany"
Journal Title:Front Plant Sci
Year:2017
Volume:20171109
Issue:
Page Number:1930 -
DOI: 10.3389/fpls.2017.01930
ISSN/ISBN:1664-462X (Print) 1664-462X (Electronic) 1664-462X (Linking)
Abstract:"Terpenes are an important group of secondary metabolites in carrots influencing taste and flavor, and some of them might also play a role as bioactive substances with an impact on human physiology and health. Understanding the genetic and molecular basis of terpene synthases (TPS) involved in the biosynthesis of volatile terpenoids will provide insights for improving breeding strategies aimed at quality traits and for developing specific carrot chemotypes possibly useful for pharmaceutical applications. Hence, a combination of terpene metabolite profiling, genotyping-by-sequencing (GBS), and genome-wide association study (GWAS) was used in this work to get insights into the genetic control of terpene biosynthesis in carrots and to identify several TPS candidate genes that might be involved in the production of specific monoterpenes. In a panel of 85 carrot cultivars and accessions, metabolite profiling was used to identify 31 terpenoid volatile organic compounds (VOCs) in carrot leaves and roots, and a GBS approach was used to provide dense genome-wide marker coverage (>168,000 SNPs). Based on this data, a total of 30 quantitative trait loci (QTLs) was identified for 15 terpenoid volatiles. Most QTLs were detected for the monoterpene compounds ocimene, sabinene, beta-pinene, borneol and bornyl acetate. We identified four genomic regions on three different carrot chromosomes by GWAS which are both associated with high significance (LOD >/= 5.91) to distinct monoterpenes and to TPS candidate genes, which have been identified by homology-based gene prediction utilizing RNA-seq data. In total, 65 TPS candidate gene models in carrot were identified and assigned to known plant TPS subfamilies with the exception of TPS-d and TPS-h. TPS-b was identified as largest subfamily with 32 TPS candidate genes"
Keywords:Daucus carota Gc-ms genome-wide association study (GWAS) genotyping-by-sequencing (GBS) homology-based gene prediction monoterpenes sesquiterpenes terpene synthase (TPS) gene;
Notes:"PubMed-not-MEDLINEKeilwagen, Jens Lehnert, Heike Berner, Thomas Budahn, Holger Nothnagel, Thomas Ulrich, Detlef Dunemann, Frank eng Switzerland 2017/11/25 Front Plant Sci. 2017 Nov 9; 8:1930. doi: 10.3389/fpls.2017.01930. eCollection 2017"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-12-2024