Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAn on-line sampling system for fermentation monitoring using membrane inlet mass spectrometry (MIMS): application to phenoxyacetic acid monitoring in penicillin fermentation    Next AbstractSex pheromones and amino acids evoke distinctly different spatial patterns of electrical activity in the goldfish olfactory bulb »

Front Vet Sci


Title:Towards Machine Vision for Insect Welfare Monitoring and Behavioural Insights
Author(s):Hansen MF; Oparaeke A; Gallagher R; Karimi A; Tariq F; Smith ML;
Address:"The Centre for Machine Vision, Bristol Robotics Laboratory, UWE Bristol, Bristol, United Kingdom. Department of Crop Science, University of Calabar, Calabar, Nigeria. SciFlair Ltd., Bristol, United Kingdom"
Journal Title:Front Vet Sci
Year:2022
Volume:20220215
Issue:
Page Number:835529 -
DOI: 10.3389/fvets.2022.835529
ISSN/ISBN:2297-1769 (Print) 2297-1769 (Electronic) 2297-1769 (Linking)
Abstract:"Machine vision has demonstrated its usefulness in the livestock industry in terms of improving welfare in such areas as lameness detection and body condition scoring in dairy cattle. In this article, we present some promising results of applying state of the art object detection and classification techniques to insects, specifically Black Soldier Fly (BSF) and the domestic cricket, with the view of enabling automated processing for insect farming. We also present the low-cost 'Insecto' Internet of Things (IoT) device, which provides environmental condition monitoring for temperature, humidity, CO(2), air pressure, and volatile organic compound levels together with high resolution image capture. We show that we are able to accurately count and measure size of BSF larvae and also classify the sex of domestic crickets by detecting the presence of the ovipositor. These early results point to future work for enabling automation in the selection of desirable phenotypes for subsequent generations and for providing early alerts should environmental conditions deviate from desired values"
Keywords:black soldier fly deep learning domestic crickets insect farming machine vision sex classification;
Notes:"PubMed-not-MEDLINEHansen, Mark F Oparaeke, Alphonsus Gallagher, Ryan Karimi, Amir Tariq, Fahim Smith, Melvyn L eng Switzerland 2022/03/05 Front Vet Sci. 2022 Feb 15; 9:835529. doi: 10.3389/fvets.2022.835529. eCollection 2022"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-12-2024