Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractSlCCD1A Enhances the Aroma Quality of Tomato Fruits by Promoting the Synthesis of Carotenoid-Derived Volatiles    Next AbstractOn the relationship between ozone and its precursors in the Pearl River Delta: application of an observation-based model (OBM) »

Environ Sci Technol


Title:Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals
Author(s):Cheng H; Reinhard M;
Address:"Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305-4020, USA"
Journal Title:Environ Sci Technol
Year:2006
Volume:40
Issue:24
Page Number:7694 - 7701
DOI: 10.1021/es060886s
ISSN/ISBN:0013-936X (Print) 0013-936X (Linking)
Abstract:"Sorption of volatile organic compounds (VOCs) in low organic carbon (<0.1%) geosorbents is difficult to predict because the sorption capacity of the mineral matrix is poorly understood. This research demonstrates hydrophobic micropores can be important sorption sites for VOCs. We studied the sorption of water and TCE on three dealuminated Y zeolites ranging from hydrophilic (CBV-300) to hydrophobic (CBV-720 and CBV-780), with the surface cation density decreasing from 2.07 to 0.42 and 0.16 sites/ nm2, respectively. Water sorption and dehydration data indicate water affinity of the zeolite micropores decreases with micropore hydrophobicity. TCE sorption on the wet zeolites decreased with increasing surface cation density. At a relative pressure (P/P0) of 0.136, TCE filled only 0.034% of the micropore volume in wet CBV-300, but 16.9% and 18.6% in wet CBV-720 and CBV-780, respectively. TCE desorption data from dry and wet silica sand (Min-U-Sil 30), kaolinite (KGa-1), and smectite (SWy-1) confirmed VOC sorption in wet microporous minerals is controlled by both the micropore volume and hydrophobicity. Results suggestTCE adsorbs in hydrophobic micropores by displacing loosely bound water, consistent with the theoretical considerations indicating the process of transferring loosely bound water from hydrophobic micropores to the bulk phase is energetically favorable"
Keywords:Adsorption Minerals/*chemistry Trichloroethylene/*chemistry Zeolites/*chemistry;
Notes:"MedlineCheng, Hefa Reinhard, Martin eng Research Support, U.S. Gov't, Non-P.H.S. 2007/01/30 Environ Sci Technol. 2006 Dec 15; 40(24):7694-701. doi: 10.1021/es060886s"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-12-2024