Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTheoretical versus observed gas-particle partitioning of carbonyl emissions from motor vehicles    Next AbstractVOCs elimination and health risk reduction in e-waste dismantling workshop using integrated techniques of electrostatic precipitation with advanced oxidation technologies »

Environ Sci Technol


Title:Use of synchrotron XANES and Cr-doped coal to further confirm the vaporization of organically bound Cr and the formation of chromium(VI) during coal oxy-fuel combustion
Author(s):Chen J; Jiao F; Zhang L; Yao H; Ninomiya Y;
Address:"State Key Laboratory of Coal Combustion, Huazhong University of Science & Technology, Wuhan 430074, People's Republic of China"
Journal Title:Environ Sci Technol
Year:2012
Volume:20120307
Issue:6
Page Number:3567 - 3573
DOI: 10.1021/es204255h
ISSN/ISBN:1520-5851 (Electronic) 0013-936X (Linking)
Abstract:"Through the use of synchrotron XANES and Cr-doped brown coal, extensive efforts have been made to clarify the volatility of organically bound Cr during oxy-fuel combustion and the mode of occurrence and leachability of Cr in resulting fly ashes. As the continuation of our previous study using raw coal, the Cr-doped coal has been tested in this study to improve the signal-to-noise ratio for Cr K-edge XANES spectra, and hence the accuracy for Cr(VI) quantification. As has been confirmed, the abundant CO(2) as a balance gas for oxy-firing has the potential to inhibit the decomposition of organically bound Cr, thereby favoring its retention in solid ash. It also has the potential to promote the oxidation of Cr(III) to Cr(VI) to a minor extent. Increasing the oxygen partial pressure, particularly in the coexistence of HCl in flue gas, favored the oxidation of Cr(III) into gaseous Cr(VI)-bearing species such as CrO(2)Cl(2). Regarding the solid impurities including Na(2)SO(4) and CaO, Na(2)SO(4) has proven to preferentially capture the Cr(III)-bearing species at a low furnace temperature such as 600 degrees C. Its promoting effect on the oxidation of Cr(III) to Cr(VI), although thermodynamically available at the temperatures examined here, is negligible in a lab-scale drop tube furnace (DTF), where the particle residence time is extremely short. In contrast, CaO has proven facilitating the capture of Cr(VI)-bearing species particularly oxychloride vapors at 1000 degrees C, forming Ca chromate with the formulas of CaCrO(4) and Ca(3)(CrO(4))(2) via a direction stabilization of Cr(VI) oxychloride vapor by CaO particle or an indirect oxidation of Cr(III) via the initial formation of Ca chromite. The fly ash collected from the combustion of Cr-doped coal alone has a lower water solubility (i.e., 58.7%) for its Cr(VI) species, due to the formation of Ba/Pb chromate and/or the incorporation of Cr(VI) vapor into a slagging phase which is water-insoluble. Adding CaO to coal increased the water-solubility of both Cr(VI) and Cr(III) by forming Ca chromite and chromate, respectively"
Keywords:Calcium Compounds/chemistry Chromium/*chemistry *Coal Coal Ash/analysis Environmental Pollutants/analysis Hydrochloric Acid/chemistry Industrial Waste Oxides/chemistry Oxygen/chemistry *Power Plants Sulfates/chemistry Synchrotrons Volatilization X-Ray Abs;
Notes:"MedlineChen, Juan Jiao, Facun Zhang, Lian Yao, Hong Ninomiya, Yoshihiko eng Research Support, Non-U.S. Gov't 2012/03/09 Environ Sci Technol. 2012 Mar 20; 46(6):3567-73. doi: 10.1021/es204255h. Epub 2012 Mar 7"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 05-12-2024