Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Inactivation of the oxytocin and the vasopressin (Avp) 1b receptor genes, but not the Avp 1a receptor gene, differentially impairs the Bruce effect in laboratory mice (Mus musculus)"    Next AbstractConcentrations of volatile organic compounds at a building with health and comfort complaints »

Front Zool


Title:Functional neuroanatomy of the rhinophore of Aplysia punctata
Author(s):Wertz A; Rossler W; Obermayer M; Bickmeyer U;
Address:"Biologische Anstalt Helgoland, Alfred Wegener Institute for Polar and Marine Research in Helmholtz Society, Kurpromenade 201, 27483 Helgoland, Germany. wertz@neuro.mpg.de"
Journal Title:Front Zool
Year:2006
Volume:20060406
Issue:
Page Number:6 -
DOI: 10.1186/1742-9994-3-6
ISSN/ISBN:1742-9994 (Electronic) 1742-9994 (Linking)
Abstract:"BACKGROUND: For marine snails, olfaction represents a crucial sensory modality for long-distance reception, as auditory and visual information is limited. The posterior tentacle of Aplysia, the rhinophore, is a chemosensory organ and several behavioural studies showed that the rhinophores can detect pheromones, initiate orientation and locomotion toward food. However the functional neuroanatomy of the rhinophore is not yet clear. Here we apply serotonin-immunohistochemistry and fluorescent markers in combination with confocal microscopy as well as optical recording techniques to elucidate the structure and function of the rhinophore of the sea slug Aplysia punctata. RESULTS: With anatomical techniques an overview of the neuroanatomical organization of the rhinophore is presented. Labelling with propidium iodide revealed one layer of cell nuclei in the sensory epithelium and densely packed cell nuclei beneath the groove of the rhinophore, which extends to about two third of the total length of the rhinophore. Serotonin immunoreactivity was found within the olfactory glomeruli underneath the epithelium as well as in the rhinophore ganglion. Retrograde tracing from the rhinophore ganglion with 4-(4-(dihexadecylamino)styryl)-N-methylpyridinium iodide (DiA) demonstrated the connection of glomeruli with the ganglion. Around 36 glomeruli (mean diameter 49 microm) were counted in a single rhinophore. Fluorimetric measurements of intracellular Ca2+ levels using Fura-2 AM loading revealed Ca2+-responses within the rhinophore ganglion to stimulation with amino acids. Bath application of different amino acids revealed differential responses at different positions within the rhinophore ganglion. CONCLUSION: Our neuroanatomical study revealed the number and position of glomeruli in the rhinophore and the rhinophore ganglion as processing stage of sensory information. Serotonin-immunoreactive processes were found extensively within the rhinophore, but was not detected within any peripheral cell body. Amino acids were used as olfactory stimuli in optical recordings and induced sensory responses in the rhinophore ganglion. The complexity of changes in intracellular Ca2+-levels indicates, that processing of odour information takes place within the rhinophore ganglion. Our neuroanatomical and functional studies of the rhinophore open up a new avenue to analyze the olfactory system in Aplysia"
Keywords:
Notes:"PubMed-not-MEDLINEWertz, Adrian Rossler, Wolfgang Obermayer, Malu Bickmeyer, Ulf eng England 2006/04/07 Front Zool. 2006 Apr 6; 3:6. doi: 10.1186/1742-9994-3-6"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-12-2024