Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractHerbivory-induced changes in the small-RNA transcriptome and phytohormone signaling in Nicotiana attenuata    Next AbstractMonitoring of indoor volatile organic compounds and polycyclic aromatic hydrocarbons arising from kerosene cooking fuel »

Faraday Discuss


Title:Introductory lecture: atmospheric organic aerosols: insights from the combination of measurements and chemical transport models
Author(s):Pandis SN; Donahue NM; Murphy BN; Riipinen I; Fountoukis C; Karnezi E; Patoulias D; Skyllakou K;
Address:"Department of Chemical Engineering, University of Patras, Patra, Greece. spyros@chemeng.upatras.gr Carnegie Mellon University, Pittsburgh, Pennsylvania, USA. Stockholm University, Stockholm, Sweden. FORTH, Patra, Greece. Department of Chemical Engineering, University of Patras, Patra, Greece"
Journal Title:Faraday Discuss
Year:2013
Volume:165
Issue:
Page Number:9 - 24
DOI: 10.1039/c3fd00108c
ISSN/ISBN:1359-6640 (Print) 1359-6640 (Linking)
Abstract:"The formation, atmospheric evolution, properties, and removal of organic particulate matter remain some of the least understood aspects of atmospheric chemistry despite the importance of organic aerosol (OA) for both human health and climate change. Here, we summarize our recent efforts to deal with the chemical complexity of the tens of thousands of organic compounds in the atmosphere using the volatility-oxygen content framework (often called the 2D-Volatility Basis Set, 2D-VBS). Our current ability to measure the ambient OA concentration as a function of its volatility and oxygen to carbon (O:C) ratio is evaluated. The combination of a thermodenuder, isothermal dilution and Aerosol Mass Spectrometry (AMS) together with a mathematical aerosol dynamics model is a promising approach. The development of computational modules based on the 2D-VBS that can be used in chemical transport models (CTMs) is described. Approaches of different complexity are tested against ambient observations, showing the challenge of simulating the complex chemical evolution of atmospheric OA. The results of the simplest approach describing the net change due to functionalization and fragmentation are quite encouraging, reproducing both the observed OA levels and O : C in a variety of conditions. The same CTM coupled with source-apportionment algorithms can be used to gain insights into the travel distances and age of atmospheric OA. We estimate that the average age of OA near the ground in continental locations is 1-2 days and most of it was emitted (either as precursor vapors or particles) hundreds of kilometers away. Condensation of organic vapors on fresh particles is critical for the growth of these new particles to larger sizes and eventually to cloud condensation nuclei (CCN) sizes. The semivolatile organics currently simulated by CTMs are too volatile to condense on these tiny particles with high curvature. We show that chemical aging reactions converting these semivolatile compounds to extremely low volatility compounds can explain the observed growth rates of new particles in rural environments"
Keywords:"Aerosols/*analysis *Atmosphere *Models, Chemical Organic Chemicals/*analysis Volatilization;"
Notes:"MedlinePandis, Spyros N Donahue, Neil M Murphy, Benjamin N Riipinen, Ilona Fountoukis, Christos Karnezi, Eleni Patoulias, David Skyllakou, Ksakousti eng Lecture Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. England 2013/01/01 Faraday Discuss. 2013; 165:9-24. doi: 10.1039/c3fd00108c"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-12-2024