|
Food Res Int
Title: | Microbial communities and volatile metabolites in different traditional fermentation starters used for Hong Qu glutinous rice wine |
|
Author(s): | Huang ZR; Guo WL; Zhou WB; Li L; Xu JX; Hong JL; Liu HP; Zeng F; Bai WD; Liu B; Ni L; Rao PF; Lv XC; |
|
Address: | "National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. College of Light Industry and Food Science, Zhongkai University of Agricultural Engineering, Guangzhou 510225, China. College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. Electronic address: liubin618@hotmail.com. Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China. National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China; College of Light Industry and Food Science, Zhongkai University of Agricultural Engineering, Guangzhou 510225, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China. Electronic address: xucong1154@163.com" |
|
Journal Title: | Food Res Int |
Year: | 2019 |
Volume: | 20181221 |
Issue: | |
Page Number: | 593 - 603 |
DOI: | 10.1016/j.foodres.2018.12.024 |
|
ISSN/ISBN: | 1873-7145 (Electronic) 0963-9969 (Linking) |
|
Abstract: | "Hong Qu glutinous rice wine (HQGRW), as one of the most typical representatives of Chinese rice wine, is generally brewed from glutinous rice by adding two traditional wine fermentation starters-Hong Qu (HQ) and Bai Qu (BQ). The objective of this study was to determine the microbial communities and volatile metabolites of different traditional fermentation starters for HQGRW, and elucidate the potential correlation between microbiota and volatile metabolites. Both heatmap and principal component analysis (PCA) revealed the significant variances in volatile profiles among different wine starters. Microbiological analysis based on high-throughput sequencing (HTS) technology demonstrated that both of bacterial and fungal communities varied significantly in different starters. HQ was dominated mainly by bacteria of Bacillus ginsengihumi (20.17%), Pantoea sp. (10.39%), Elizabethkingia sp. (5.52%), Streptococcus sp. (5.03%) Brevundimonas sp. (3.03%), Rickettsia prowazekii (2.94%), Thermus thermophilus (2.54%), Bacillus amyloliquefaciens (1.48%), Bacillus aryabhattai (1.42%); fungi of Monascus purpureus (39.7%), Aspergillus niger (27.35%), Xeromyces bisporus (8.39%), Aspergillus penicillioides (6.89%), Aspergillus flavus (2.33%) and Pichia farinose (0.79%). By contrast, BQ contained much higher proportions of bacteria of Lactococcus lactis (10.45%), Lactobacillus brevis (9.99%), Pediococcus pentosaceus (8.29%), Weissella paramesenteroides (6.69%), Lactobacillus fermentum (4.83%), Gluconobacter thailandicus (3.93%), Lactobacillus alimentarius (3.59%), fungi of Rhizopus arrhizus (31.47%), Saccharomycopsis fibuligera (27.86%), Aspergillus niger (20.81%), Issatchenkia orientalis (3.79%), Saccharomycopsis malanga (3.15%), Clavispora lusitaniae (2.29%), Candida tropicalis (1.47%), Saccharomyces cerevisiae (1.11%) and Rhizopus microsporus (0.57%). Furthermore, core functional microbiota that might contribute to volatile flavour development was explored through Spearman's correlation-based network analysis. Lactobacillus brevis, Lactobacillus alimentarius, Lactobacillus plantarum and Aspergillus niger were found to be strongly associated with acid compounds (FDR adjusted P?ª+ª+0.01), while Pichia sp., Candida sp., Monascus purpureus, Lactobacillus brevis and Lactobacillus alimentarius were positively correlated with concentrations of aromatic esters associated with fruity and floral notes (FDR adjusted P?ª+ª+0.01), implying that these microorganisms might make significant contributions to the flavour of rice wine. These findings demonstrated that the aromatic quality of HQGRW may be critically influenced by the microbiota in traditional fermentation starters. To conclude, this study would contribute to the development of novel defined starter cultures for improving the aromatic quality of HQGRW" |
|
Keywords: | Bacteria/classification/genetics/metabolism Biodiversity *Fermentation Fungi/classification/genetics/metabolism High-Throughput Screening Assays *Microbiota Mycobiome Oryza/*metabolism Volatile Organic Compounds/*analysis Wine/*analysis/*microbiology High; |
|
Notes: | "MedlineHuang, Zi-Rui Guo, Wei-Ling Zhou, Wen-Bin Li, Lu Xu, Jia-Xin Hong, Jia-Li Liu, Hui-Peng Zeng, Feng Bai, Wei-Dong Liu, Bin Ni, Li Rao, Ping-Fan Lv, Xu-Cong eng Research Support, Non-U.S. Gov't Canada 2019/05/22 Food Res Int. 2019 Jul; 121:593-603. doi: 10.1016/j.foodres.2018.12.024. Epub 2018 Dec 21" |
|
|
|
|
|
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 04-12-2024
|