Title: | Enhancing biomethanogenic treatment of fresh incineration leachate using single chambered microbial electrolysis cells |
Author(s): | Gao Y; Sun D; Dang Y; Lei Y; Ji J; Lv T; Bian R; Xiao Z; Yan L; Holmes DE; |
Address: | "Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China. Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China. Electronic address: dangyan.p@gmail.com. Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Rd, Springfield, MA 01119, United States" |
DOI: | 10.1016/j.biortech.2017.02.024 |
ISSN/ISBN: | 1873-2976 (Electronic) 0960-8524 (Linking) |
Abstract: | "Methanogenic treatment of municipal solid waste (MSW) incineration leachate can be hindered by high concentrations of refractory organic matter and humification of compounds in the leachate. In an attempt to overcome some of these impediments, microbial electrolysis cells (MECs) were incorporated into anaerobic digesters (ADMECs). COD removal efficiencies and methane production were 8.7% and 44.3% higher in ADMECs than in controls, and ADMEC reactors recovered more readily from souring caused by high organic loading rates. The degradation rate of large macromolecules was substantially higher (96% vs 81%) in ADMEC than control effluent, suggesting that MECs stimulated degradation of refractory organic matter and reduced humification. Exoelectrogenic bacteria and microorganisms known to form syntrophic partnerships were enriched in ADMECs. These results show that ADMECs were more effective at treatment of MSW incineration leachate, and should be taken into consideration when designing future treatment facilities" |
Keywords: | "Archaea/metabolism Bacteria/metabolism *Bioelectric Energy Sources Biofilms Bioreactors/microbiology China Electrodes *Electrolysis Fatty Acids, Volatile/analysis *Incineration Methane/*biosynthesis Molecular Weight Organic Chemicals/analysis Refuse Dispo;" |
Notes: | "MedlineGao, Yan Sun, Dezhi Dang, Yan Lei, Yuqing Ji, Jiayang Lv, Tingwei Bian, Rui Xiao, Zhihui Yan, Liangming Holmes, Dawn E eng Review England 2017/02/24 Bioresour Technol. 2017 May; 231:129-137. doi: 10.1016/j.biortech.2017.02.024. Epub 2017 Feb 10" |