Title: | Identification of the Flavone-Inducible Counter-Defense Genes and Their cis-Elements in Helicoverpa armigera |
Author(s): | Deng Z; Zhang Y; Fang L; Zhang M; Wang L; Ni X; Li X; |
Address: | "School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China. School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China. USDA-ARS, Crop Genetics and Breeding Research Unit, University of Georgia-Tifton Campus, Tifton, GA 31793, USA. Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA" |
ISSN/ISBN: | 2072-6651 (Electronic) 2072-6651 (Linking) |
Abstract: | "Flavone is widely found in plants and plays an important role in plant defense against pests. Many pests, such as Helicoverpa armigera, use flavone as a cue to upregulate counter-defense genes for detoxification of flavone. Yet the spectrum of the flavone-inducible genes and their linked cis-regulatory elements remains unclear. In this study, 48 differentially expressed genes (DEGs) were found by RNA-seq. These DEGs were mainly concentrated in the retinol metabolism and drug metabolism-cytochrome P450 pathways. Further in silico analysis of the promoter regions of 24 upregulated genes predicted two motifs through MEME and five previously characterized cis-elements including CRE, TRE, EcRE, XRE-AhR and ARE. Functional analysis of the two predicted motifs and two different versions of ARE (named ARE1 and ARE2) in the promoter region of the flavone-inducible carboxylesterase gene CCE001j verified that the two motifs and ARE2 are not responsible for flavone induction of H. armigera counter-defense genes, whereas ARE1 is a new xenobiotic response element to flavone (XRE-Fla) and plays a decisive role in flavone induction of CCE001j. This study is of great significance for further understanding the antagonistic interaction between plants and herbivorous insects" |
Keywords: | Animals *Moths/genetics/metabolism Cytochrome P-450 Enzyme System/genetics/metabolism *Flavones/metabolism Larva Are Helicoverpa armigera carboxylesterase cis-transcriptional regulation detoxification metabolism flavone; |
Notes: | "MedlineDeng, Zhongyuan Zhang, Yuting Fang, Liying Zhang, Min Wang, Lixiang Ni, Xinzhi Li, Xianchun eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Switzerland 2023/06/27 Toxins (Basel). 2023 May 29; 15(6):365. doi: 10.3390/toxins15060365" |