Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTheoretical investigation on the adsorption configuration and (*)OH-initiated photocatalytic degradation mechanism of typical atmospheric VOCs styrene onto (TiO2)n clusters    Next AbstractSensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks »

PLoS One


Title:Transcriptome profiling revealed novel transcriptional regulators in maize responses to Ostrinia furnacalis and jasmonic acid
Author(s):Wang H; Li S; Teng S; Liang H; Xin H; Gao H; Huang D; Lang Z;
Address:"Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, P. R. China"
Journal Title:PLoS One
Year:2017
Volume:20170516
Issue:5
Page Number:e0177739 -
DOI: 10.1371/journal.pone.0177739
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"Chewing insects cause severe yield losses in crop production worldwide. Crop plants counteract chewing insects by transcriptionally promoting a repertoire of defense gene products that are either toxic to, or attractive to the natural enemies of, pest insects. However, the complexity of the transcriptional reprogramming in plant defense response against chewing insects is still not well understood. In this study, the genome-wide early responses in maize seedlings to Asian corn borer (ACB, Ostrinia furnacalis) and also to jasmonic acid(JA), the pivotal phytohormone controlling plant defense response against herbivory, were transcriptionally profiled by RNA-Seq. Clustering of differentially expressed genes (DEGs) along with functional enrichment analysis revealed important biological processes regulated in response to ACB infestation and/or jasmonic acid. Moreover, DEGs with distinct expression patterns were differentially enriched with diverse families of cis-elements on their promoters. Multiple inventories of differentially expressed transcription factors (DETFs) in each DEG group were also analyzed. A transient expression assay using transfected maize protoplastswas established to examine the potential roles of DETFs in maize defense response and JA signaling, and this was used to show that ZmNAC60, an ACB- and JA-inducible DETF, represented a novel positive regulator of JA and defense pathway genes. This study provided a comprehensive transcriptional picture for the early dynamics of maize defense responses and JA signaling, and the identification of DETFs offered potential targets for further functional genomics investigation of master regulators in maize defense responses against herbivory"
Keywords:"Animals Cyclopentanes/*pharmacology *Gene Expression Regulation, Plant Moths/*pathogenicity Oxylipins/*pharmacology Plant Proteins/genetics/metabolism Promoter Regions, Genetic Transcription Factors/genetics/metabolism *Transcriptome Zea mays/drug effects;"
Notes:"MedlineWang, Hai Li, Shengyan Teng, Shouzhen Liang, Haisheng Xin, Hongjia Gao, Hongjiang Huang, Dafang Lang, Zhihong eng 2017/05/19 PLoS One. 2017 May 16; 12(5):e0177739. doi: 10.1371/journal.pone.0177739. eCollection 2017"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024