Title: | Oxygen Vacancy Defects Boosted High Performance p-Type Delafossite CuCrO(2) Gas Sensors |
Author(s): | Tong B; Deng Z; Xu B; Meng G; Shao J; Liu H; Dai T; Shan X; Dong W; Wang S; Zhou S; Tao R; Fang X; |
Address: | "University of Science and Technology of China , Hefei 230026 , China. China Pharmaceutical University , Nanjing 211198 , China" |
Journal Title: | ACS Appl Mater Interfaces |
ISSN/ISBN: | 1944-8252 (Electronic) 1944-8244 (Linking) |
Abstract: | "p-type ternary oxides can be extensively explored as alternative sensing channels to binary oxides with diverse structural and compositional versatilities. Seeking a novel approach to magnify their sensitivities toward gas molecules, e.g., volatile organic compounds (VOCs), will definitely expand their applications in the frontier area of healthcare and air-quality monitoring. In this work, delafossite CuCrO(2) (CCO) nanoparticles with different grain sizes have been utilized as p-type ternary oxide sensors. It was found that singly ionized oxygen vacancies (V(o)(*)) defects, compared with the grain size of CCO nanoparticles, play an important role in enhancing the charge exchange at the VOCs molecules/CCO interface. In addition to suppressing the hole concentration of the sensor channel, the unpaired electron trapped in V(o)(*) provides an active site for chemisorptions of environmental oxygen and VOCs molecules. The synergetic effect is responsible for the observed increase of sensitivity. Furthermore, the sensitive (V(o)(*) defect-rich) CCO sensor exhibits good reproducibility and stability under a moderate operation temperature (<325 degrees C). Our work highlights that V(o)(*) defects, created via either in situ synthesis or postannealing treatment, could be explored to rationally boost the performance of p-type ternary oxide sensors" |
Keywords: | delafossite CuCrO2 p-type sensitivity singly ionized oxygen vacancy; |
Notes: | "PubMed-not-MEDLINETong, Bin Deng, Zanhong Xu, Bo Meng, Gang Shao, Jingzhen Liu, Hongyu Dai, Tiantian Shan, Xueyan Dong, Weiwei Wang, Shimao Zhou, Shu Tao, Ruhua Fang, Xiaodong eng 2018/09/13 ACS Appl Mater Interfaces. 2018 Oct 10; 10(40):34727-34734. doi: 10.1021/acsami.8b10485. Epub 2018 Sep 26" |