Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractRecent developments and applications of selected ion flow tube mass spectrometry (SIFT-MS)    Next AbstractVolatile pheromone signalling in Drosophila »

Eukaryot Cell


Title:An ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity
Author(s):Smith DG; Garcia-Pedrajas MD; Hong W; Yu Z; Gold SE; Perlin MH;
Address:"Department of Biology, University of Louisville, Louisville, Kentucky 40208, USA"
Journal Title:Eukaryot Cell
Year:2004
Volume:3
Issue:1
Page Number:180 - 189
DOI: 10.1128/EC.3.1.180-189.2004
ISSN/ISBN:1535-9778 (Print) 1535-9786 (Electronic) 1535-9786 (Linking)
Abstract:"The mitogen-activated protein kinase (MAPK) pathways are conserved from fungi to humans and have been shown to play important roles in mating and filamentous growth for both Saccharomyces cerevisiae and dimorphic fungi and in infectivity for pathogenic fungi. STE20 encodes a protein kinase of the p21-activated protein kinase family that regulates more than one of these cascades in yeasts. We hypothesized that an Ste20p homologue would play a similar role in the dimorphic plant pathogen Ustilago maydis. The full-length copy of the U. maydis gene was obtained from a genomic library; it lacked introns and was predicted to encode a protein of 826 amino acids, whose sequence confirmed its identity as the first Ste20p homologue to be isolated from a plant pathogen. The predicted protein contained both an N-terminal regulatory Cdc42-Rac interactive binding domain and a C-terminal catalytic kinase domain. Disruption of the gene smu1 resulted in a delayed mating response in a mating-type-specific manner and also in a severe reduction in disease production on maize. Unlike the Ustilago bypass of cyclase (ubc) mutations previously identified in genes in the pheromone-responsive MAPK cascade, mutation of smu1 does not by itself act as an extragenic suppressor of the filamentous phenotype of a uac1 mutant. Thus, the direct connection of Smu1p to MAPK cascade function has yet to be established. Even so, Smu1, though not absolutely required for mating, is necessary for wild-type mating and pathogenicity"
Keywords:"Blotting, Northern Catalytic Domain Cosmids DNA/metabolism DNA, Complementary/metabolism Gene Library Genome, Fungal Intracellular Signaling Peptides and Proteins Introns MAP Kinase Kinase Kinases MAP Kinase Signaling System Mutation Phylogeny Polymerase;"
Notes:"MedlineSmith, David G Garcia-Pedrajas, Maria D Hong, Wei Yu, Zhanyang Gold, Scott E Perlin, Michael H eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2004/02/12 Eukaryot Cell. 2004 Feb; 3(1):180-9. doi: 10.1128/EC.3.1.180-189.2004"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024