Title: | Adsorption film with sub-milli-interface morphologies via direct ink writing for indoor formaldehyde removal |
Author(s): | Chen Q; Tian E; Luo Z; Mo J; |
Address: | "Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China. Songshan Lake Materials Laboratory, Dongguan 523808, China; Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. Department of Building Science, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing 100084, China; Key Laboratory of Eco Planning & Green Building, Ministry of Education (Tsinghua University), Beijing 100084, China. Electronic address: mojinhan@tsinghua.edu.cn" |
DOI: | 10.1016/j.jhazmat.2021.128190 |
ISSN/ISBN: | 1873-3336 (Electronic) 0304-3894 (Linking) |
Abstract: | "In-situ thermally regenerated flexible adsorption films are superior for long-term purification of indoor low-concentration volatile organic compounds (VOCs). To further improve the adsorption kinetics of the films, the surface morphology of adsorption films was suggested in hierarchical channel structure. However, such structure is far from practical applications because of its complicated fabrication method and limited flexibility. In this study, we proposed a convenient and fast method named direct ink writing (DIW) based 3D printing to fabricate flexible adsorption films. Inks were prepared to have appropriate rheological properties and good printability. Three types of adsorption film (flat, straight finned, and trough-like finned) were constructed on flexible polyimide circuit substrates by DIW. We utilized the printed adsorption films for indoor level (1 ppm) formaldehyde removal. The trough-like finned film achieved the best performance among the three printed films, showing a 275% longer penetration time and 252% larger effective adsorption capacity than the flat film. By conducting a 7-cycle adsorption-desorption experiment (more than 12 h), we verified that the films' adsorption performance could effectively recover via in-situ heating. This work could dance around the complicated coating process, increase the structural flexibility and reduce the adsorbent interfacial modification cost" |
Keywords: | Direct ink writing Formaldehyde Indoor air quality Rheological behavior Surface morphology design; |
Notes: | "PubMed-not-MEDLINEChen, Qiwei Tian, Enze Luo, Ziyi Mo, Jinhan eng Netherlands 2022/01/11 J Hazard Mater. 2022 Apr 5; 427:128190. doi: 10.1016/j.jhazmat.2021.128190. Epub 2021 Dec 31" |