Title: | Volatile organic compounds of conspecific-damaged Eucalyptus benthamii influence responses of mated females of Thaumastocoris peregrinus |
Address: | "Departamento de Quimica, Laboratorio de Semioquimicos, Universidade Federal do Parana UFPR, 81531-990, CP 19081, Curitiba-PR, Brazil" |
DOI: | 10.1007/s10886-013-0287-y |
ISSN/ISBN: | 1573-1561 (Electronic) 0098-0331 (Linking) |
Abstract: | "Plants respond to herbivory by synthesizing and releasing novel blends of volatile organic compounds (VOCs). Natural enemies are attracted to these VOCs, but little is known about the effects of these chemicals on the herbivores themselves. We studied the effect of Thaumastocoris peregrinus herbivory on VOCs released by Eucalyptus benthamii plants and the responses of this herbivore to the VOCs. In total, 12 compounds released by E. benthamii were identified. Five compounds (beta-pinene, linalool, 9-epi-(E)-caryophyllene, viridiflorol, and one unidentified compound) emitted after herbivore and mechanical damage were not detected in collections from undamaged plants. The three most abundant VOCs, alpha-pinene, aromadendrene, and globulol, were released in greater quantities from herbivore-damaged plants compared to plants with mechanical damage, which, in turn, released greater amounts than undamaged (control) plants. The VOCs emitted after herbivore damage did not differ during the photophase and scotophase in either quantity or quality. In an olfactometer, mated female T. peregrinus showed a preference for undamaged plants over herbivore-damaged plants, and also for hexane over alpha-pinene at an amount equivalent to that released by a herbivore-damaged plant. In the olfactometer, virgin females did not exhibit any preference between conspecific-damaged or undamaged plants" |
Keywords: | Animals Eucalyptus/*physiology Feeding Behavior/*physiology Female Herbivory/*physiology Heteroptera/*physiology Volatile Organic Compounds/*metabolism; |
Notes: | "MedlineMartins, Camila B C Zarbin, Paulo H G eng Research Support, Non-U.S. Gov't 2013/04/24 J Chem Ecol. 2013 May; 39(5):602-11. doi: 10.1007/s10886-013-0287-y. Epub 2013 Apr 23" |