Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Phytoene desaturase-silenced citrus as a trap crop with multiple cues to attract Diaphorina citri, the vector of Huanglongbing"    Next AbstractReal-time measurement of volatile chemicals released by bed bugs during mating activities »

Plants (Basel)


Title:Silencing Phytoene Desaturase Causes Alteration in Monoterpene Volatiles Belonging to the Methylerythritol Phosphate Pathway
Author(s):Killiny N;
Address:"Citrus Research and Education Center, Department of Plant Pathology, IFAS, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA"
Journal Title:Plants (Basel)
Year:2022
Volume:20220120
Issue:3
Page Number: -
DOI: 10.3390/plants11030276
ISSN/ISBN:2223-7747 (Print) 2223-7747 (Electronic) 2223-7747 (Linking)
Abstract:"Volatile organic compounds (VOCs) are a large group of lipophilic hydrocarbon compounds derived from different biosynthetic pathways in plants. VOCs are produced and released from plants as a defense mechanism against biotic and abiotic stresses. They are involved in communication with the surrounding environment including plant-to-plant interactions and attracting or repelling insects. In citrus, phytoene desaturase (PDS), a precursor of the carotenoid biosynthetic pathway has been silenced using the Citrus tristeza virus-induced gene silencing technique. Silencing PDS resulted in a reduction of carotenoid contents and in the photobleaching phenotype in leaves. Interestingly, the strength of the phenotype was varied within the plants due to the unequal distribution of virus particles. Using solid-phase microextraction (SPME), fibers released VOCs from leaves with gradient degrees of the photobleaching phenotype were collected and analyzed in gas chromatography-mass spectrophotometry (GC-MS). Overall, 47 VOCs belonging to 12 chemically distinguished groups were detected and identified using authentic standards. Simple linear regression showed that monoterpenes belonging to methylerythritol phosphate (MEP) were significantly corrected with the degrees of photobleaching (carotenoid content). Both carotenoids and MEP biosynthetic pathways occurred in the plastid. Thus, we provide preliminary evidence for a potential role of carotenoids in supporting the MEP pathway and/or the production of monoterpenes"
Keywords:Citrus tristeza virus methylerythritol phosphate monoterpenes photobleaching phytoene desaturase virus-induced gene silencing volatile organic compounds;
Notes:"PubMed-not-MEDLINEKilliny, Nabil eng Switzerland 2022/02/16 Plants (Basel). 2022 Jan 20; 11(3):276. doi: 10.3390/plants11030276"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-07-2024