Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractTrophic complexity and the adaptive value of damage-induced plant volatiles    Next AbstractWhat happens when crops are turned on? Simulating constitutive volatiles for tritrophic pest suppression across an agricultural landscape »

PLoS One


Title:"Plant defenses and predation risk differentially shape patterns of consumption, growth, and digestive efficiency in a guild of leaf-chewing insects"
Author(s):Kaplan I; McArt SH; Thaler JS;
Address:"Department of Entomology, Purdue University, West Lafayette, Indiana, United States of America. Departments of Entomology and Ecology & Evolutionary Biology, Cornell University, Ithaca, New York, United States of America"
Journal Title:PLoS One
Year:2014
Volume:20140409
Issue:4
Page Number:e93714 -
DOI: 10.1371/journal.pone.0093714
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"Herbivores are squeezed between the two omnipresent threats of variable food quality and natural enemy attack, but these two factors are not independent of one another. The mechanisms by which organisms navigate the dual challenges of foraging while avoiding predation are poorly understood. We tested the effects of plant defense and predation risk on herbivory in an assemblage of leaf-chewing insects on Solanum lycopersicum (tomato) that included two Solanaceae specialists (Manduca sexta and Leptinotarsa decemlineata) and one generalist (Trichoplusia ni). Defenses were altered using genetic manipulations of the jasmonate phytohormonal cascade, whereas predation risk was assessed by exposing herbivores to cues from the predaceous stink bug, Podisus maculiventris. Predation risk reduced herbivore food intake by an average of 29% relative to predator-free controls. Interestingly, this predator-mediated impact on foraging behavior largely attenuated when quantified in terms of individual growth rate. Only one of the three species experienced lower body weight under predation risk and the magnitude of this effect was small (17% reduction) compared with effects on foraging behavior. Manduca sexta larvae, compensated for their predator-induced reduction in food intake by more effectively converting leaf tissue to body mass. They also had higher whole-body lipid content when exposed to predators, suggesting that individuals convert energy to storage forms to draw upon when risk subsides. In accordance with expectations based on insect diet breadth, plant defenses tended to have a stronger impact on consumption and growth in the generalist than the two specialists. These data both confirm the ecological significance of predators in the foraging behavior of herbivorous prey and demonstrate how sophisticated compensatory mechanisms allow foragers to partially offset the detrimental effects of reduced food intake. The fact that these mechanisms operated across a wide range of plant resistance phenotypes suggests that compensation is not always constrained by reduced food quality"
Keywords:Animals Coleoptera/growth & development Digestion/*physiology Herbivory/*physiology Insecta/*growth & development/physiology Larva/growth & development Manduca/growth & development Mastication/*physiology Plant Leaves/*parasitology Plants/*immunology *Pre;
Notes:"MedlineKaplan, Ian McArt, Scott H Thaler, Jennifer S eng Research Support, U.S. Gov't, Non-P.H.S. 2014/04/11 PLoS One. 2014 Apr 9; 9(4):e93714. doi: 10.1371/journal.pone.0093714. eCollection 2014"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024