Title: | Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa |
Author(s): | Desurmont GA; Xu H; Turlings TC; |
Address: | "Institute of Biology, University of Neuchatel, Switzerland" |
ISSN/ISBN: | 1365-3040 (Electronic) 0140-7791 (Linking) |
Abstract: | "The co-occurrence of different antagonists on a plant can greatly affect infochemicals with ecological consequences for higher trophic levels. Here we investigated how the presence of a plant pathogen, the powdery mildew Erysiphe cruciferarum, on Brassica rapa affects (1) plant volatiles emitted in response to damage by a specialist herbivore, Pieris brassicae; (2) the attraction of the parasitic wasp Cotesia glomerata and (3) the performance of P. brassicae and C. glomerata. Plant volatiles were significantly induced by herbivory in both healthy and mildew-infected plants, but were quantitatively 41% lower for mildew-infected plants compared to healthy plants. Parasitoids strongly preferred Pieris-infested plants to dually-infested (Pieris + mildew) plants, and preferred dually infested plants over only mildew-infected plants. The performance of P. brassicae was unaffected by powdery mildew, but C. glomerata cocoon mass was reduced when parasitized caterpillars developed on mildew-infected plants. Thus, avoidance of mildew-infested plants may be adaptive for C. glomerata parasitoids, whereas P. brassicae caterpillars may suffer less parasitism on mildew-infected plants in nature. From a pest management standpoint, the concurrent presence of multiple plant antagonists can affect the efficiency of specific natural enemies, which may in turn have a negative impact on the regulation of pest populations" |
Keywords: | Animals Ascomycota/*physiology Brassica rapa/metabolism/*microbiology Butterflies/*parasitology Female *Food Chain Herbivory Host-Parasite Interactions Male Smell Volatile Organic Compounds/*metabolism Wasps/*physiology Cotesia glomerata Erysiphe crucifer; |
Notes: | "MedlineDesurmont, Gaylord A Xu, Hao Turlings, Ted C J eng Research Support, Non-U.S. Gov't 2016/04/05 Plant Cell Environ. 2016 Sep; 39(9):1920-7. doi: 10.1111/pce.12752. Epub 2016 May 12" |