Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractShort-range allelochemicals from a plant-herbivore association: a singular case of oviposition-induced synomone for an egg parasitoid    Next AbstractUse of Preservatives in Vegetable Protein-Based Food Attractants for Monitoring Anastrepha fraterculus (Diptera: Tephritidae) in Peach Orchards »

Ecol Evol


Title:Testing for top-down cascading effects in a biomass-driven ecological network of soil invertebrates
Author(s):Conti E; Di Mauro LS; Pluchino A; Mulder C;
Address:"Department of Biological, Geological and Environmental Sciences University of Catania Catania Italy. Department of Physics and Astronomy 'Ettore Majorana' University of Catania Catania Italy. INFN Unit of Catania Catania Italy"
Journal Title:Ecol Evol
Year:2020
Volume:20200618
Issue:14
Page Number:7062 - 7072
DOI: 10.1002/ece3.6408
ISSN/ISBN:2045-7758 (Print) 2045-7758 (Electronic) 2045-7758 (Linking)
Abstract:"To investigate the structural changes of a food-web architecture, we considered real data coming from a soil food web in one abandoned pasture with former low-pressure agriculture management and we reproduced the corresponding ecological network within a multi-agent fully programmable modeling environment in order to simulate dynamically the cascading effects due to the removal of entire functional guilds.We performed several simulations differing from each other for the functional implications. At the first trophic level, we simulated a removal of the prey, that is, herbivores and microbivores, while at the second trophic level, we simulated a removal of the predators, that is, omnivores and carnivores. The five main guilds were removed either separately or in combination.The alteration in the food-web architecture induced by the removal of entire functional guilds was the highest when the entire second trophic level was removed, while the removal of all microbivores caused an alteration in the food-web structure of less than 5% of the total changes due to the removal of opportunistic and predatory species.Omnivores alone account for the highest shifts in time of the numerical abundances of the remaining species, providing computational evidence of the importance of the degree of omnivory in the stabilization of soil biota"
Keywords:ecological network functional biodiversity lotka-volterra multiple prey-predator model soil food webs temporal simulation;
Notes:"PubMed-not-MEDLINEConti, Erminia Di Mauro, Letizia Stella Pluchino, Alessandro Mulder, Christian eng England 2020/08/08 Ecol Evol. 2020 Jun 18; 10(14):7062-7072. doi: 10.1002/ece3.6408. eCollection 2020 Jul"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024