Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffects of different mixing ratios on emissions from passenger cars fueled with methanol/gasoline blends    Next AbstractInvestigation of Ground-Level Ozone and High-Pollution Episodes in a Megacity of Eastern China »

J Genet


Title:"Molecular characterization and differential expression of two duplicated dorant receptor genes, AcerOr1 and AcerOr3, in Apis cerana cerana"
Author(s):Zhao H; Gao P; Du H; Ma W; Tian S; Jiang Y;
Address:"College of Animal Science and Technology, Shanxi Agricultural University, Taigu Shanxi 030801, People's Republic of China. jiangys-001@163.com"
Journal Title:J Genet
Year:2014
Volume:93
Issue:1
Page Number:53 - 61
DOI: 10.1007/s12041-014-0332-9
ISSN/ISBN:0973-7731 (Electronic) 0022-1333 (Linking)
Abstract:"Insects use olfaction to recognize a wide range of volatile cues, to locate food sources, mates, hosts and oviposition sites. These chemical volatiles are perceived by odorant receptors (ORs) expressed on the dendritic membrane of olfactory neurons, most of which are housed within the chemosensilla of antennae. Most insect ORs are tandemly arrayed on chromosomes and some of them are formed by gene duplication. Here, we identified a pair of duplicated Or genes, AcerOr1 and AcerOr3, from the antennae of the Asian honeybee, Apis cerana cerana, and reported their molecular characterization and temporal expression profiles. The results showed that these two genes shared high similarity both in sequence and the gene structure. Quantitative real-time PCR analysis of temporal expression pattern indicated that in drones the expression pattern of these two genes were very similar. The transcripts expressed weakly in larvae and pupae, then increased gradually in adults. In workers, the expression level of AcerOr1 changed more drastically and expressed higher than that of AcerOr3. However, both reached their highest expression level in one-day-old adults. In addition, the expression profiles between different sexes revealed that AcerOr3 appear to be expressed biased in male antennae. These results suggest that AcerOr1 may perceive odours of floral scents, while AcerOr3 may detect odours critical to male behaviour, such as the queen substance cues"
Keywords:"Amino Acid Sequence Animals Base Sequence Bees/*genetics DNA, Complementary/chemistry/genetics *Gene Expression Regulation Gene Expression Regulation, Developmental Phylogeny Protein Interaction Domains and Motifs RNA, Messenger/genetics Receptors, Odoran;"
Notes:"MedlineZhao, Huiting Gao, Pengfei Du, Haiyan Ma, Weihua Tian, Songhao Jiang, Yusuo eng Research Support, Non-U.S. Gov't India 2014/05/21 J Genet. 2014 Apr; 93(1):53-61. doi: 10.1007/s12041-014-0332-9"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 01-07-2024