Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEvolution of the Sex Pheromone Communication System in Ostrinia Moths    Next AbstractEngineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes »

Fungal Genet Biol


Title:Coregulated expression of loline alkaloid-biosynthesis genes in Neotyphodium uncinatum cultures
Author(s):Zhang DX; Stromberg AJ; Spiering MJ; Schardl CL;
Address:"Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA"
Journal Title:Fungal Genet Biol
Year:2009
Volume:20090412
Issue:8
Page Number:517 - 530
DOI: 10.1016/j.fgb.2009.03.010
ISSN/ISBN:1096-0937 (Electronic) 1087-1845 (Linking)
Abstract:"Epichloe endophytes (holomorphic Epichloe spp. and anamorphic Neotyphodium spp.) are systemic, often heritable symbionts of cool-season grasses (subfamily Pooideae). Many epichloae provide protection to their hosts by producing anti-insect compounds. Among these are the loline alkaloids (LA), which are toxic and deterrent to a broad range of herbivorous insects but not to mammalian herbivores. LOL, a gene cluster containing nine genes, is associated with LA biosynthesis. We investigated coordinate regulation between LOL-gene expression and LA production in minimal medium (MM) cultures of Neotyphodium uncinatum. Expression of all LOL genes significantly fit temporal quadratic patterns during LA production. LOL-gene expression started before LA were detectable, and increased while LA accumulated. The highest gene expression level was reached at close to the time of most rapid LA accumulation, and gene expression declined to a very low level as amounts of LA plateaued. Temporal expression profiles of the nine LOL genes were tightly correlated with each other, but not as tightly correlated with proC and metE (genes for biosynthesis of precursor amino acids). Furthermore, the start days and peak days of expression significantly correlated with the order of the LOL-cluster genes in the genome. Hierarchical cluster analysis indicated three pairs of genes-lolA and lolC, lolO and lolD, and lolT and lolE-expression of which was especially tightly correlated. Of these, lolA and lolC tended to be expressed early, and lolT and lolE tended to be expressed late, in keeping with the putative roles of the respective gene products in the LA-biosynthesis pathway. Several common transcriptional binding sites were discovered in the LOL upstream regions. However, low expression of P(lolC2)uidA and P(lolA2)uidA in N. uncinatum transformants suggested induced expression of LOL genes might be subject to position effect at the LOL locus"
Keywords:"Alkaloids/*biosynthesis Binding Sites Biosynthetic Pathways/*genetics DNA, Fungal/genetics Fungal Proteins/*biosynthesis/genetics Gene Expression Profiling *Gene Expression Regulation, Fungal Neotyphodium/genetics/*physiology Poaceae/microbiology Regulato;"
Notes:"MedlineZhang, Dong-Xiu Stromberg, Arnold J Spiering, Martin J Schardl, Christopher L eng Research Support, U.S. Gov't, Non-P.H.S. 2009/04/16 Fungal Genet Biol. 2009 Aug; 46(8):517-30. doi: 10.1016/j.fgb.2009.03.010. Epub 2009 Apr 12"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 03-07-2024