Title: | Heat stress increases the use of cytosolic pyruvate for isoprene biosynthesis |
Author(s): | Yanez-Serrano AM; Mahlau L; Fasbender L; Byron J; Williams J; Kreuzwieser J; Werner C; |
Address: | "Institute of Ecosystem Physiology, University Freiburg, Freiburg, Germany. Atmospheric Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany" |
ISSN/ISBN: | 1460-2431 (Electronic) 0022-0957 (Print) 0022-0957 (Linking) |
Abstract: | "The increasing occurrence of heatwaves has intensified temperature stress on terrestrial vegetation. Here, we investigate how two contrasting isoprene-emitting tropical species, Ficus benjamina and Pachira aquatica, cope with heat stress and assess the role of internal plant carbon sources for isoprene biosynthesis in relation to thermotolerance. To our knowledge, this is the first study to report isoprene emissions from P. aquatica. We exposed plants to two levels of heat stress and determined the temperature response curves for isoprene and photosynthesis. To assess the use of internal C sources in isoprene biosynthesis, plants were fed with 13C position-labelled pyruvate. F. benjamina was more heat tolerant with higher constitutive isoprene emissions and stronger acclimation to higher temperatures than P. aquatica, which showed higher induced isoprene emissions at elevated temperatures. Under heat stress, both isoprene emissions and the proportion of cytosolic pyruvate allocated into isoprene synthesis increased. This represents a mechanism that P. aquatica, and to a lesser extent F. benjamina, has adopted as an immediate response to sudden increase in heat stress. However, in the long run under prolonged heat, the species with constitutive emissions (F. benjamina) was better adapted, indicating that plants that invest more carbon into protective emissions of biogenic volatile organic compounds tend to suffer less from heat stress" |
Keywords: | Butadienes/*metabolism Cytosol/*metabolism Heat-Shock Response/*physiology Hemiterpenes/*metabolism Photosynthesis/physiology Populus/*metabolism Pyruvic Acid/*metabolism Temperature Ficus benjamina Pachira aquatica heat stress isoprene biosynthesis photo; |
Notes: | "MedlineYanez-Serrano, Ana Maria Mahlau, Lucas Fasbender, Lukas Byron, Joseph Williams, Jonathan Kreuzwieser, Jurgen Werner, Christiane eng Research Support, Non-U.S. Gov't England 2019/08/10 J Exp Bot. 2019 Oct 24; 70(20):5827-5838. doi: 10.1093/jxb/erz353" |