Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Identification of volatile compounds, quantification of glycerol and trace elements in distilled spirits produced in Mozambique"    Next AbstractModification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster »

Neurosci Res


Title:Identification of Bombyx mori 14-3-3 orthologs and the interactor Hsp60
Author(s):Tabunoki H; Shimada T; Banno Y; Sato R; Kajiwara H; Mita K; Satoh J;
Address:"Department of Bioinformatics and Molecular Neuropathology, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan"
Journal Title:Neurosci Res
Year:2008
Volume:20080403
Issue:3
Page Number:271 - 280
DOI: 10.1016/j.neures.2008.03.007
ISSN/ISBN:0168-0102 (Print) 0168-0102 (Linking)
Abstract:"The 14-3-3 protein family consists of evolutionarily conserved, acidic 30 kDa proteins composed of seven isoforms named beta, gamma, epsilon, zeta, eta, theta, and sigma in mammalian cells. The dimeric complex of 14-3-3 isoforms, acting as a molecular adaptor, plays a central role in regulation of neuronal function. Since aberrant expression of 14-3-3 is identified in the brains of Alzheimer disease and Parkinson disease, a convenient insect model, if it is available, is highly valuable for studying a pathological role of 14-3-3 in neurodegeneration. Here, we identified the silkworm Bombyx mori 14-3-3 orthologs, zeta and epsilon isoforms highly homologous in amino acid sequences to the human 14-3-3zeta and 14-3-3epsilon. By Western blot, the expression of zeta and epsilon isoforms was identified at substantial levels in the first instar larva, markedly upregulated in the second instar larva, and the highest levels were maintained in the late stage of larva, the pupa, and the adult. Furthermore, by protein overlay and immunoprecipitation, we identified Hsp60 as a 14-3-3-binding partner. The 14-3-3 proteins interacted with the N-terminal fragment of Hsp60. The 14-3-3zeta and epsilon isoforms, along with Hsp60, were expressed widely with overlapping distribution in larval and adult tissues, including brain, fat body, silk gland, Malpighian tube, midgut, ovary, testis, antenna, and pheromone gland. These observations suggest that a molecular adaptor 14-3-3 and a molecular chaperone Hsp60 cooperate to achieve a wide range of cellular functions in B. mori"
Keywords:"14-3-3 Proteins/genetics/*metabolism Animals Bombyx/growth & development/*metabolism Chaperonin 60/*metabolism Cloning, Molecular Electrophoresis, Gel, Two-Dimensional Gene Expression Regulation, Developmental/physiology Humans Immunoprecipitation/methods;"
Notes:"MedlineTabunoki, Hiroko Shimada, Toru Banno, Yutaka Sato, Ryoichi Kajiwara, Hideyuki Mita, Kazuei Satoh, Jun-ichi eng Research Support, Non-U.S. Gov't Ireland 2008/05/09 Neurosci Res. 2008 Jul; 61(3):271-80. doi: 10.1016/j.neures.2008.03.007. Epub 2008 Apr 3"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024