Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractConvergent evolution of a fused sexual cycle promotes the haploid lifestyle    Next AbstractInvestigation of the relationship between skin-emitted volatile fatty acids and skin surface acidity in healthy participants-a pilot study »

Rapid Commun Mass Spectrom


Title:Evaluation of peroxidative stress of cancer cells in vitro by real-time quantification of volatile aldehydes in culture headspace
Author(s):Shestivska V; Rutter AV; Sule-Suso J; Smith D; Spanel P;
Address:"J. Heyrovsky Institute of Physical Chemistry of Science, Academy of Science of the Czech Republic, Dolejskova 3, 18223, Prague 8, Czech Republic. Institute for Science and Technology in Medicine, School of Medicine, Keele University, Thornburrow Drive, Hartshill, Stoke-on-Trent ST4 7QB, UK"
Journal Title:Rapid Commun Mass Spectrom
Year:2017
Volume:31
Issue:16
Page Number:1344 - 1352
DOI: 10.1002/rcm.7911
ISSN/ISBN:1097-0231 (Electronic) 0951-4198 (Linking)
Abstract:"RATIONALE: Peroxidation of lipids in cellular membranes results in the release of volatile organic compounds (VOCs), including saturated aldehydes. The real-time quantification of trace VOCs produced by cancer cells during peroxidative stress presents a new challenge to non-invasive clinical diagnostics, which as described here, we have met with some success. METHODS: A combination of selected ion flow tube mass spectrometry (SIFT-MS), a technique that allows rapid, reliable quantification of VOCs in humid air and liquid headspace, and electrochemistry to generate reactive oxygen species (ROS) in vitro has been used. Thus, VOCs present in the headspace of CALU-1 cancer cell line cultures exposed to ROS have been monitored and quantified in real time using SIFT-MS. RESULTS: The CALU-1 lung cancer cells were cultured in 3D collagen to mimic in vivo tissue. Real-time SIFT-MS analyses focused on the volatile aldehydes: propanal, butanal, pentanal, hexanal, heptanal and malondialdehyde (propanedial), that are expected to be products of cellular membrane peroxidation. All six aldehydes were identified in the culture headspace, each reaching peak concentrations during the time of exposure to ROS and eventually reducing as the reactants were depleted in the culture. Pentanal and hexanal were the most abundant, reaching concentrations of a few hundred parts-per-billion by volume, ppbv, in the culture headspace. CONCLUSIONS: The results of these experiments demonstrate that peroxidation of cancer cells in vitro can be monitored and evaluated by direct real-time analysis of the volatile aldehydes produced. The combination of adopted methodology potentially has value for the study of other types of VOCs that may be produced by cellular damage"
Keywords:"Aldehydes/*analysis/metabolism Cell Culture Techniques/methods Cell Line, Tumor Electrochemical Techniques Humans Mass Spectrometry/*methods Neoplasms/*metabolism Oxidation-Reduction Oxidative Stress/*physiology;"
Notes:"MedlineShestivska, Violetta Rutter, Abigail V Sule-Suso, Josep Smith, David Spanel, Patrik eng England 2017/05/31 Rapid Commun Mass Spectrom. 2017 Aug 30; 31(16):1344-1352. doi: 10.1002/rcm.7911"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024