Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractOdor-Specific Deactivation Defects in a Drosophila Odorant-Binding Protein Mutant    Next AbstractAttenuation of methane and volatile organic compounds in landfill soil covers »

Biol Trace Elem Res


Title:Factors affecting the determination of total mercury in biological samples by continuous-flow cold vapor atomic absorption spectrophotometry
Author(s):Scheuhammer AM; Bond D;
Address:"Environment Canada, Canadian Wildlife Service, Ottawa, Ontario, Canada"
Journal Title:Biol Trace Elem Res
Year:1991
Volume:31
Issue:2
Page Number:119 - 129
DOI: 10.1007/BF02990420
ISSN/ISBN:0163-4984 (Print) 0163-4984 (Linking)
Abstract:"The acidic reduction of Hg using a continuous-flow analytical system was evaluated. With 25% SnCl2 as the reductant, characteristic concentrations (sensitivities) of 0.44 microgram/L (open cell) and 0.29 microgram/L (flow-through cell) were obtained using inorganic Hg2+ standards in 1.5% HCl. When CH3Hg+ standards were used, absorption signals were an order of magnitude lower, indicating that Sn(II) is incapable of producing Hg degree from organic Hg in this acidic reduction system. Addition of CdCl2 to the SnCl2 reductant, as suggested by Magos (1) for the reduction of organomercurials under alkaline conditions, was without beneficial effect. Similarly, combining Sn with another reducing agent (hydroxylamine hydrochloride), or a strong alkaline solution (40% NaOH), in the reaction coil of the flow-through system did not significantly enhance the Hg absorption signal for either inorganic or organic Hg. Recovery of Hg from spiked liver homogenates digested at 70-80 degrees C using a HNO3/H2SO4/HCl procedure and stabilized with 0.5 mM K2Cr2O7 was > 85% using either inorganic Hg2+ or CH3Hg+, indicating that this digestion procedure successfully breaks the C-Hg bond to form readily reducible Hg species. Using L-cysteine to stabilize standards of inorganic Hg2+ in HCl caused significant depressions of the Hg absorption signal at L-cysteine concentrations > 0.001% (approximately 0.5 mM); 0.1% L-cysteine caused total suppression of the Hg signal. These results indicate that: (1) acidic reduction of Hg by Sn in this continuous-flow system requires breakdown of organomercurials prior to analysis; (2) tissue digestion using HNO3/H2SO4/HCl followed by the addition of K2Cr2O7 to stabilize Hg2+ achieves this breakdown and allows good recovery of total Hg; and (3) use of L-cysteine to complex and prevent losses of Hg should be avoided in systems using acidic reduction of Hg. Concentrations of endogenous tissue sulfhydryls are generally lower than those associated with depressed absorbance signals during the acidic reduction of Hg"
Keywords:Animals Columbidae Cysteine/chemistry Hydrochloric Acid Hydrogen-Ion Concentration Hydroxylamine Liver/*metabolism Mercury/*analysis/metabolism Mercury Compounds/chemistry Methylmercury Compounds/chemistry Sensitivity and Specificity Sodium Hydroxide Spec;
Notes:"MedlineScheuhammer, A M Bond, D eng 1991/11/01 Biol Trace Elem Res. 1991 Nov; 31(2):119-29. doi: 10.1007/BF02990420"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-09-2024