Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractGreener chemistry in analytical sciences: from green solvents to applications in complex matrices. Current challenges and future perspectives: a critical review    Next AbstractDynamic air sampling of volatile organic compounds using solid phase microextraction »

J R Soc Interface


Title:Desert ants achieve reliable recruitment across noisy interactions
Author(s):Razin N; Eckmann JP; Feinerman O;
Address:"Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel"
Journal Title:J R Soc Interface
Year:2013
Volume:20130313
Issue:82
Page Number:20130079 -
DOI: 10.1098/rsif.2013.0079
ISSN/ISBN:1742-5662 (Electronic) 1742-5689 (Print) 1742-5662 (Linking)
Abstract:"We study how desert ants, Cataglyphis niger, a species that lacks pheromone-based recruitment mechanisms, inform each other about the presence of food. Our results are based on automated tracking that allows us to collect a large database of ant trajectories and interactions. We find that interactions affect an ant's speed within the nest. Fast ants tend to slow down, whereas slow ones increase their speed when encountering a faster ant. Faster ants tend to exit the nest more frequently than slower ones. So, if an ant gains enough speed through encounters with others, then she tends to leave the nest and look for food. On the other hand, we find that the probability for her to leave the nest depends only on her speed, but not on whether she had recently interacted with a recruiter that has found the food. This suggests a recruitment system in which ants communicate their state by very simple interactions. Based on this assumption, we estimate the information-theoretical channel capacity of the ants' pairwise interactions. We find that the response to the speed of an interacting nest-mate is very noisy. The question is then how random interactions with ants within the nest can be distinguished from those interactions with a recruiter who has found food. Our measurements and model suggest that this distinction does not depend on reliable communication but on behavioural differences between ants that have found the food and those that have not. Recruiters retain high speeds throughout the experiment, regardless of the ants they interact with; non-recruiters communicate with a limited number of nest-mates and adjust their speed following these interactions. These simple rules lead to the formation of a bistable switch on the level of the group that allows the distinction between recruitment and random noise in the nest. A consequence of the mechanism we propose is a negative effect of ant density on exit rates and recruitment success. This is, indeed, confirmed by our measurements"
Keywords:"*Animal Communication Animals Ants/*physiology Feeding Behavior/*physiology *Models, Biological *Noise;"
Notes:"MedlineRazin, Nitzan Eckmann, Jean-Pierre Feinerman, Ofer eng Research Support, Non-U.S. Gov't England 2013/03/15 J R Soc Interface. 2013 Mar 13; 10(82):20130079. doi: 10.1098/rsif.2013.0079. Print 2013 May 6"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 27-12-2024