Title: | F-actin distribution and function during sexual differentiation in Schizosaccharomyces pombe |
Author(s): | Petersen J; Nielsen O; Egel R; Hagan IM; |
Address: | "Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Copenhagen, Denmark. jan0302@biobase.uk" |
ISSN/ISBN: | 0021-9533 (Print) 0021-9533 (Linking) |
Abstract: | "Sexual differentiation in Schizosaccharomyces pombe is induced from the G1 phase of the cell cycle by nitrogen starvation and the presence of mating pheromones. We describe the distribution of F-actin during sexual differentiation. Cortical F-actin dots have previously been shown to be restricted to one end of the rod shaped cell during the G1 phase of the cell cycle. Within half an hour of nitrogen starvation the distribution of cortical F-actin dots switched from being monopolar to bipolar. This was then reversed as the F-actin cytoskeleton repolarized so that cortical F-actin dots accumulated towards the projection tip at one end of the cell. Following cell fusion, F-actin dots were randomly scattered during the horsetail movement that precedes meiosis I and remained scattered until prometaphase or metaphase of meiosis II, when they concentrated around the nucleus. F-actin was seen on the lagging face of the nuclei which faced the partner nucleus during anaphase B of meiosis II. Early on in this anaphase F-actin was also seen on the opposite side of the nucleus, near the spindle pole body. F-actin accumulated within the spores in the mature ascus. Treatment with the actin depolymerising drug Latrunculin A showed that F-actin is required for cell fusion and spore formation. Latrunculin A treatment extended all stages from karyogamy to meiosis I. The S. pombe homologue of the actin binding protein profilin, Cdc3, was shown to be required for conjugation. Cdc3 co-localized with the formin related molecule Fus1 at the projection tip. The polarization of F-actin cortical dots to the projection tip was unaffected in the cdc3.124 mutant, but cdc3.124 mutant cells were unable to break down the cell walls between the two cells following agglutination" |
Keywords: | "Actin Cytoskeleton/drug effects/metabolism Actins/genetics/*metabolism/*physiology Bridged Bicyclo Compounds, Heterocyclic/pharmacology Cell Cycle Proteins/physiology Cell Polarity/drug effects Cytoskeleton/drug effects/physiology Fungal Proteins/physiolo;" |
Notes: | "MedlinePetersen, J Nielsen, O Egel, R Hagan, I M eng Wellcome Trust/United Kingdom Research Support, Non-U.S. Gov't England 1998/05/20 J Cell Sci. 1998 Apr; 111 ( Pt 7):867-76. doi: 10.1242/jcs.111.7.867" |