Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEffects of androstenol on human sexual arousal    Next AbstractEppendorf winner. Evolution and revolution in odor detection »

Nature


Title:An essential role for a CD36-related receptor in pheromone detection in Drosophila
Author(s):Benton R; Vannice KS; Vosshall LB;
Address:"Laboratory of Neurogenetics and Behaviour, The Rockefeller University, 1230 York Avenue, Box 63, New York, New York 10065, USA"
Journal Title:Nature
Year:2007
Volume:20071017
Issue:7167
Page Number:289 - 293
DOI: 10.1038/nature06328
ISSN/ISBN:1476-4687 (Electronic) 0028-0836 (Linking)
Abstract:"The CD36 family of transmembrane receptors is present across metazoans and has been implicated biochemically in lipid binding and transport. Several CD36 proteins function in the immune system as scavenger receptors for bacterial pathogens and seem to act as cofactors for Toll-like receptors by facilitating recognition of bacterially derived lipids. Here we show that a Drosophila melanogaster CD36 homologue, Sensory neuron membrane protein (SNMP), is expressed in a population of olfactory sensory neurons (OSNs) implicated in pheromone detection. SNMP is essential for the electrophysiological responses of OSNs expressing the receptor OR67d to (Z)-11-octadecenyl acetate (cis-vaccenyl acetate, cVA), a volatile male-specific fatty-acid-derived pheromone that regulates sexual and social aggregation behaviours. SNMP is also required for the activation of the moth pheromone receptor HR13 by its lipid-derived pheromone ligand (Z)-11-hexadecenal, but is dispensable for the responses of the conventional odorant receptor OR22a to its short hydrocarbon fruit ester ligands. Finally, we show that SNMP is required for responses of OR67d to cVA when ectopically expressed in OSNs not normally activated by pheromones. Because mammalian CD36 binds fatty acids, we suggest that SNMP acts in concert with odorant receptors to capture pheromone molecules on the surface of olfactory dendrites. Our work identifies an unanticipated cofactor for odorant receptors that is likely to have a widespread role in insect pheromone detection. Moreover, these results define a unifying model for CD36 function, coupling recognition of lipid-based extracellular ligands to signalling receptors in both pheromonal communication and pathogen recognition through the innate immune system"
Keywords:"Acetates/metabolism Animals CD36 Antigens/*chemistry/metabolism Cilia/metabolism Drosophila Proteins/*chemistry/genetics/*metabolism Drosophila melanogaster/genetics/*metabolism/physiology Electrophysiology Genomics Immunity, Innate Male Molecular Sequenc;"
Notes:"MedlineBenton, Richard Vannice, Kirsten S Vosshall, Leslie B eng Research Support, Non-U.S. Gov't England 2007/10/19 Nature. 2007 Nov 8; 450(7167):289-93. doi: 10.1038/nature06328. Epub 2007 Oct 17"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-06-2024