Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractAge-specific olfactory attraction between Western honey bee drones (Apis mellifera) and its chemical basis    Next AbstractIntegration of traditional and innovative characterization techniques for flux-based assessment of dense non-aqueous phase liquid (DNAPL) sites »

J Comp Neurol


Title:Marked interspecific differences in the neuroanatomy of the male olfactory system of honey bees (genus Apis)
Author(s):Bastin F; Couto A; Larcher V; Phiancharoen M; Koeniger G; Koeniger N; Sandoz JC;
Address:"Evolution, Genomes, Behavior and Ecology, CNRS (UMR 9191), Univ Paris-Sud, IRD, Universite Paris-Saclay, Gif-sur-Yvette, France. Ratchaburi Campus, King Mongkut's University of Technology Thonburi, Bangkok, Thailand. Behavioral Physiology and Sociobiology (Zoology II), Biocenter, University of Wurzburg, Wurzburg, Germany"
Journal Title:J Comp Neurol
Year:2018
Volume:20181111
Issue:18
Page Number:3020 - 3034
DOI: 10.1002/cne.24513
ISSN/ISBN:1096-9861 (Electronic) 0021-9967 (Linking)
Abstract:"All honey bee species (genus Apis) display a striking mating behavior with the formation of male (drone) congregations, in which virgin queens mate with many drones. Bees' mating behavior relies on olfactory communication involving queen-but also drone pheromones. To explore the evolution of olfactory communication in Apis, we analyzed the neuroanatomical organization of the antennal lobe (primary olfactory center) in the drones of five species from the three main lineages (open-air nesting species: dwarf honey bees Apis florea and giant honey bees Apis dorsata; cavity-nesting species: Apis mellifera, Apis kochevnikovi, and Apis cerana) and from three populations of A. cerana (Borneo, Thailand, and Japan). In addition to differences in the overall number of morphological units, the glomeruli, our data reveal marked differences in the number and position of macroglomeruli, enlarged units putatively dedicated to sex pheromone processing. Dwarf and giant honey bee species possess two macroglomeruli while cavity-nesting bees present three or four macroglomeruli, suggesting an increase in the complexity of sex communication during evolution in the genus Apis. The three A. cerana populations showed differing absolute numbers of glomeruli but the same three macroglomeruli. Overall, we identified six different macroglomeruli in the genus Apis. One of these (called MGb), which is dedicated to the detection of the major queen compound 9-ODA in A. mellifera, was conserved in all species. We discuss the implications of these results for our understanding of sex communication in honey bees and propose a putative scenario of antennal lobe evolution in the Apis genus"
Keywords:Animals Bees/*anatomy & histology Male Olfactory Cortex/*anatomy & histology Species Specificity Rrid: Scr_000450 Rrid: Scr_003070 Rrid: Scr_007353 Rrid: Scr_013672 Rrid: Scr_014213 antennal lobe honey bee macroglomerulus premating isolation reproduction;
Notes:"MedlineBastin, Florian Couto, Antoine Larcher, Virginie Phiancharoen, Mananya Koeniger, Gudrun Koeniger, Nikolaus Sandoz, Jean-Christophe eng Research Support, Non-U.S. Gov't 2018/11/13 J Comp Neurol. 2018 Dec 15; 526(18):3020-3034. doi: 10.1002/cne.24513. Epub 2018 Nov 11"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025