Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractLow-cost gas sensors produced by the graphite line-patterning technique applied to monitoring banana ripeness    Next AbstractOdor selectivity of hyposmia and cognitive impairment in patients with Parkinson's disease »

J Anim Ecol


Title:Behavioural and physiological responses of limpet prey to a seastar predator and their transmission to basal trophic levels
Author(s):Manzur T; Vidal F; Pantoja JF; Fernandez M; Navarrete SA;
Address:"Centro de Estudios Avanzados en Zonas Aridas (CEAZA), Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile. Estacion Costera de Investigaciones Marinas and Center for Marine Conservation, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. Facultad de Ciencias del Mar, Universidad Catolica del Norte, Larrondo 1281, Coquimbo, Chile"
Journal Title:J Anim Ecol
Year:2014
Volume:20140225
Issue:4
Page Number:923 - 933
DOI: 10.1111/1365-2656.12199
ISSN/ISBN:1365-2656 (Electronic) 0021-8790 (Linking)
Abstract:"Besides the well-documented behavioural changes induced by predators on prey, predator-induced stress can also include a suite of biochemical, neurological and metabolic changes that may represent important energetic costs and have long-lasting effects on individuals and on the demography of prey populations. The rapid transmission of prey behavioural changes to lower trophic levels, usually associated with alteration of feeding rates, can substantially change and even reverse direction over the long term as prey cope with the energetic costs associated with predation-induced stress. It is therefore critical to evaluate different aspects and assess the costs of non-consumptive predator effects on prey. We investigated the behavioural and physiological responses of an herbivorous limpet, Fissurella limbata, to the presence of chemical cues and direct non-lethal contact by the common seastar predator, Heliaster helianthus. We also evaluated whether the limpets feeding behaviour was modified by the predator and whether this translated into positive or negative effects on biomass of the green alga, Ulva sp. Our experimental results show the presence of Heliaster led to increased movement activity, increased distances travelled, changes in time budget over different environmental conditions and increased feeding rate in the keyhole limpets. Moreover, additional experiments showed that, beyond the increased metabolic rate associated with limpet increased activity, predator chemical cues heighten metabolic rate as part of the induced stress response. Changes in individual movement and displacement distances observed through the 9-day experiment can be interpreted as part of the escape response exhibited by limpets to reduce the risk of being captured by the predator. Increased limpet feeding rate on algae can be visualized as a way individuals compensate for the elevated energetic costs of movement and heightened metabolic rates produced by the predator-induced stress, which can lead to negative effects on abundance of the lower trophic level. We suggest that in order to understand the total non-consumptive effect of predators in natural communities, it is necessary to evaluate not only short-term behavioural responses, but also the costs associated with the multiple interdependent pathways triggered by predator-induced stress, and determine how individuals cope with these costs in the long term"
Keywords:Animals Cues *Food Chain Gastropoda/*physiology Predatory Behavior Starfish/*physiology Ulva/*physiology behaviour energetic cost non-lethal predator effects physiology predator-induced stress trait-mediated indirect effects;
Notes:"MedlineManzur, Tatiana Vidal, Francisco Pantoja, Jose F Fernandez, Miriam Navarrete, Sergio A eng Research Support, Non-U.S. Gov't England 2014/01/17 J Anim Ecol. 2014 Jul; 83(4):923-33. doi: 10.1111/1365-2656.12199. Epub 2014 Feb 25"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024