Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractFine-scale environmental control of hybridization in oaks    Next AbstractDesign of an inventory system for the volatile organic compounds emitted by various activities »

Int J Food Microbiol


Title:H. guilliermondii impacts growth kinetics and metabolic activity of S. cerevisiae: the role of initial nitrogen concentration
Author(s):Lage P; Barbosa C; Mateus B; Vasconcelos I; Mendes-Faia A; Mendes-Ferreira A;
Address:"Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB-UTAD), University of Tras-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real, Portugal. CBQF/Centro de Biotecnologia e Quimica Fina, Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Rua Dr. Antonio Bernardino de Almeida, 4200-072 Porto, Portugal. Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology (IBB/CGB-UTAD), University of Tras-os-Montes and Alto Douro, School of Life Sciences and Environment, Vila Real, Portugal. Electronic address: anamf@utad.pt"
Journal Title:Int J Food Microbiol
Year:2014
Volume:20131207
Issue:
Page Number:62 - 69
DOI: 10.1016/j.ijfoodmicro.2013.11.031
ISSN/ISBN:1879-3460 (Electronic) 0168-1605 (Linking)
Abstract:"Non-Saccharomyces yeasts include different species which comprise an ecologically and biochemically diverse group capable of altering fermentation dynamics and wine composition and flavour. In this study, single- and mixed-culture of Hanseniaspora guilliermondii and Saccharomyces cerevisiae were used to ferment natural grape-juice, under two nitrogen regimes. In single-culture the strain H. guilliermondii failed to complete total sugar breakdown even though the nitrogen available has not been a limiting factor of its growth or fermentative activity. In mixed-culture, that strain negatively interfered with the growth and fermentative performance of S. cerevisiae, resulting in lower fermentation rate and longer fermentation length, irrespective of the initial nitrogen concentration. The impact of co-inoculation on the volatile compounds profile was more evident in the wines obtained from DAP-supplemented musts, characterised by increased levels of ethyl and acetate esters, associated with fruity and floral character of wines. Moreover, the levels of fatty acids and sulphur compounds which are responsible for unpleasant odours that depreciate wine sensory quality were significantly lower. Accordingly, data obtained suggests that the strain H. guilliermondii has potential to be used as adjunct of S. cerevisiae in wine industry, although possible interactions with S. cerevisiae still need to be elucidated"
Keywords:*Fermentation Hanseniaspora/*metabolism Nitrogen/*metabolism Odorants/analysis Saccharomyces cerevisiae/*growth & development/*metabolism Volatile Organic Compounds/analysis Wine/*analysis/*microbiology Alcoholic fermentation Aroma Nitrogen response Non-S;
Notes:"MedlineLage, Patricia Barbosa, Catarina Mateus, Beatriz Vasconcelos, Isabel Mendes-Faia, Arlete Mendes-Ferreira, Ana eng Research Support, Non-U.S. Gov't Netherlands 2013/12/24 Int J Food Microbiol. 2014 Feb 17; 172:62-9. doi: 10.1016/j.ijfoodmicro.2013.11.031. Epub 2013 Dec 7"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024