Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractThe Impact of NOD2 Variants on Fecal Microbiota in Crohn's Disease and Controls Without Gastrointestinal Disease    Next AbstractFungal biocatalysts in the biofiltration of VOC-polluted air »

Nanoscale


Title:"3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform"
Author(s):Kennedy ZC; Christ JF; Evans KA; Arey BW; Sweet LE; Warner MG; Erikson RL; Barrett CA;
Address:"Chemical and Biological Signature Science, Pacific Northwest National Laboratory (PNNL), P. O. Box 999, Richland, WA 99352, USA. chris.barrett@pnnl.gov"
Journal Title:Nanoscale
Year:2017
Volume:9
Issue:17
Page Number:5458 - 5466
DOI: 10.1039/c7nr00617a
ISSN/ISBN:2040-3372 (Electronic) 2040-3364 (Linking)
Abstract:"We report the production of flexible, highly-conductive poly(vinylidene fluoride) (PVDF) and multi-walled carbon nanotube (MWCNT) composites as filament feedstock for 3D printing. This account further describes, for the first time, fused deposition modelling (FDM) derived 3D-printed objects with chemiresistive properties in response to volatile organic compounds. The typically prohibitive thermal expansion and die swell characteristics of PVDF were minimized by the presence of MWCNTs in the composites enabling straightforward processing and printing. The nanotubes form a dispersed network as characterized by helium ion microscopy, contributing to excellent conductivity ( approximately 3 x 10(-2) S cm(-1)). The printed composites contain little residual metal particulate relative to parts from commercial PLA-nanocomposite material visualized by micro-X-ray computed tomography (mu-CT) and corroborated with thermogravimetric analysis. Printed sensing strips, with MWCNT loadings up to 15% mass, function as reversible vapour sensors with the strongest responses arising with organic compounds capable of readily intercalating and subsequently swelling the PVDF matrix (acetone and ethyl acetate). A direct correlation between MWCNT concentration and resistance change was also observed, with larger responses (up to 161% after 3 minutes) being generated with decreased MWCNT loadings. These findings highlight the utility of FDM printing in generating low-cost sensors that respond strongly and reproducibly to target vapours. Furthermore, the sensors can be easily printed in different geometries, expanding their utility to wearable form factors. The proposed formulation strategy may be tailored to sense diverse sets of vapour classes through structural modification of the polymer backbone and/or functionalization of the nanotubes within the composite"
Keywords:
Notes:"PubMed-not-MEDLINEKennedy, Z C Christ, J F Evans, K A Arey, B W Sweet, L E Warner, M G Erikson, R L Barrett, C A eng England 2017/04/20 Nanoscale. 2017 May 4; 9(17):5458-5466. doi: 10.1039/c7nr00617a"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024