Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractModeling solid-phase microextraction of volatile organic compounds by porous coatings using finite element analysis    Next AbstractEffect of multilure and its components on parasites ofScolytus multistriatus (Coleoptera: Scolytidae) »

Mol Cell Biol


Title:Identification of p21-activated kinase specificity determinants in budding yeast: a single amino acid substitution imparts Ste20 specificity to Cla4
Author(s):Keniry ME; Sprague GF;
Address:"Department of Biology and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA"
Journal Title:Mol Cell Biol
Year:2003
Volume:23
Issue:5
Page Number:1569 - 1580
DOI: 10.1128/MCB.23.5.1569-1580.2003
ISSN/ISBN:0270-7306 (Print) 1098-5549 (Electronic) 0270-7306 (Linking)
Abstract:"Two closely related p21-activated kinases from Saccharomyces cerevisiae, Ste20 and Cla4, interact with and are regulated by Cdc42, a small Rho-like GTPase. These kinases are argued to perform a common essential function, based on the observation that the single mutants are viable whereas the double mutant is inviable. Despite having a common upstream regulator and at least one common function, these molecules also have many distinct cellular signaling roles. Ste20 signals upstream of several mitogen-activated protein kinase cascades (e.g., pheromone response, filamentous growth, and high osmolarity), and Cla4 signals during budding and cytokinesis. In order to investigate how these kinases are directed to distinct functions, we sought to identify specificity determinants within Ste20 and Cla4. To this end, we constructed both chimeric fusions and point mutants and tested their ability to perform unique and shared cellular roles. Specificity determinants for both kinases were mapped to the C-terminal kinase domains. Remarkably, the substitution of a single amino acid, threonine 818, from Ste20 into an otherwise wild-type Cla4, Cla4D772T, conferred the ability to perform many Ste20-specific functions"
Keywords:"Blotting, Western Glutathione Transferase/metabolism Haploidy Intracellular Signaling Peptides and Proteins MAP Kinase Kinase Kinases/metabolism Phosphorylation Plasmids/metabolism Point Mutation Protein Binding Protein Serine-Threonine Kinases/*metabolis;"
Notes:"MedlineKeniry, Megan E Sprague, George F Jr eng R01 GM030027/GM/NIGMS NIH HHS/ T32 GM007413/GM/NIGMS NIH HHS/ GM-30027/GM/NIGMS NIH HHS/ GM07413/GM/NIGMS NIH HHS/ Research Support, U.S. Gov't, P.H.S. 2003/02/18 Mol Cell Biol. 2003 Mar; 23(5):1569-80. doi: 10.1128/MCB.23.5.1569-1580.2003"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025