Title: | OH radical-initiated chemistry of isoprene in aqueous media. Atmospheric implications |
Author(s): | Kameel FR; Hoffmann MR; Colussi AJ; |
Address: | "Ronald and Maxine Linde Center for Global Environmental Science, California Institute of Technology , California 91125, United States" |
ISSN/ISBN: | 1520-5215 (Electronic) 1089-5639 (Linking) |
Abstract: | "The fate of isoprene (2-methyl-1,3-butadiene, ISO) emissions into the atmosphere is not fully understood. Increasing awareness that ISO is only partially processed in the gas-phase has turned attention to its reactive uptake by fog, cloud, and aerosol droplets. A hydrophobic gas, ISO would preferentially partition to the surface rather than the bulk of aqueous media. Such media normally contain dissolved O2 and water-soluble unsaturated organics and support *OH generation rates (from the solar photolysis of dissolved H2O2) that are several orders of magnitude larger than in the gas-phase. Thus, ISO should be converted therein to heavier products rather than into the C4-C5 volatile compounds produced in the gas-phase. Here we substantiate such a scenario by reporting that the lambda > 305 nm photolysis of H2O2 in dilute aqueous ISO solutions yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. A minimum of seven C10H15OH isomers are resolved by reverse-phase high-performance liquid chromatography and detected as MH(+) (m/z = 153) and MH(+)-18 (m/z = 135) signals by electrospray ionization mass spectrometry. Our findings are consistent with the addition of *OH to ISO, followed by HO-ISO* reactions with ISO in competition with O2, leading to second generation HO(ISO)2* radicals that terminate as C10H15OH via beta-H abstraction by O2. We show that a significant fraction of gas-phase olefins should be converted into less volatile species via this process on wet airborne particles" |
Notes: | "PubMed-not-MEDLINEKameel, F Rifkha Hoffmann, M R Colussi, A J eng 2013/05/24 J Phys Chem A. 2013 Jun 20; 117(24):5117-23. doi: 10.1021/jp4026267. Epub 2013 Jun 7" |