Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractInfluence of fumigants on sunflower seeds: Characteristics of fumigant desorption and changes in volatile profiles    Next AbstractCharacterization of volatile organic compounds in smoke at municipal structural fires »

J Toxicol Environ Health A


Title:Characterization of volatile organic compounds in smoke at experimental fires
Author(s):Austin CC; Wang D; Ecobichon DJ; Dussault G;
Address:"Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, Quebec, Canada. caustin@sarec.ca"
Journal Title:J Toxicol Environ Health A
Year:2001
Volume:63
Issue:3
Page Number:191 - 206
DOI: 10.1080/15287390151101547
ISSN/ISBN:1528-7394 (Print) 0098-4108 (Linking)
Abstract:"Significant associations between firefighting and cancer have been reported; however, studies finding toxic products of combustion at municipal fires have been limited by (1) technical difficulties encountered at the scene of working fires, (2) the lack of a coherent sampling strategy, and (3) the absence of verified sampling methods. The objective of the present study was to characterize the presence of volatile organic compound (VOC) combustion products in fire smoke. Air samples from experimental fires burning various materials commonly found at structural fires were collected into evacuated Summa canisters and analyzed for 144 target VOCs using cryogenic preconcentration and gas chromatography/mass spectroscopy (GC/MSD) methodology. The resulting chromatograms were characterized by a small number of predominant peaks, with 14 substances (propene, benzene, xylenes, 1-butene/2-methylpropene, toluene, propane, 1,2-butadiene, 2-methylbutane, ethylbenzene, naphthalene, styrene, cyclopentene, 1-methylcyclopentene, isopropylbenzene) being found in proportionately higher concentrations in all experimental fires and accounting for 65% (SD = +/-12%) by mass of total measured VOCs. Benzene, toluene, 1,3-butadiene, naphthalene, and styrene were found at higher concentrations than most other VOCs and increased with the time of combustion together with increasing levels of carbon monoxide. Benzene was found in the highest concentrations, with peak levels ranging from 0.6 ppm to 65 ppm, while the levels of 1,3-butadiene, styrene, and naphthalene peaked at 0.1, 0.4, and 3 ppm, respectively. This study revealed that there were no new or novel, toxic nonpolar VOCs resulting from the burning of common building materials. This is important in view of the studies that have found associations between firefighting and various forms of cancer"
Keywords:Beds Benzene/chemistry Carcinogens/*analysis Chromatography *Fires Gasoline Humans Linear Models Organic Chemicals/*analysis Polymers Smoke/*analysis Volatilization Wood;
Notes:"MedlineAustin, C C Wang, D Ecobichon, D J Dussault, G eng Research Support, Non-U.S. Gov't England 2001/06/19 J Toxicol Environ Health A. 2001 Jun 8; 63(3):191-206. doi: 10.1080/15287390151101547"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025