Title: | Avoiding entry into intracellular protein degradation pathways by signal mutations increases protein secretion in Pichia pastoris |
Author(s): | Ito Y; Ishigami M; Hashiba N; Nakamura Y; Terai G; Hasunuma T; Ishii J; Kondo A; |
Address: | "Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan. Technology Research Association of Highly Efficient Gene Design (TRAHED), Kobe, Japan. Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan. Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Japan. Center for Sustainable Resource Science, RIKEN, Yokohama, Japan" |
ISSN/ISBN: | 1751-7915 (Electronic) 1751-7915 (Linking) |
Abstract: | "In our previous study, we serendipitously discovered that protein secretion in the methylotrophic yeast Pichia pastoris is enhanced by a mutation (V50A) in the mating factor alpha (MFalpha) prepro-leader signal derived from Saccharomyces cerevisiae. In the present study, we investigated 20 single-amino-acid substitutions, including V50A, located within the MFalpha signal peptide, indicating that V50A and several single mutations alone provided significant increase in production of the secreted proteins. In addition to hydrophobicity index analysis, both an unfolded protein response (UPR) biosensor analysis and a microscopic observation showed a clear difference on the levels of UPR induction and mis-sorting of secretory protein into vacuoles among the wild-type and mutated MFalpha signal peptides. This work demonstrates the importance of avoiding entry of secretory proteins into the intracellular protein degradation pathways, an observation that is expected to contribute to the engineering of strains with increased production of recombinant secreted proteins" |
Keywords: | Amino Acid Sequence *Fungal Proteins/genetics/metabolism Mating Factor/genetics/metabolism Mutation *Pichia/genetics/metabolism Protein Sorting Signals/genetics Proteolysis Recombinant Proteins/metabolism Saccharomyces cerevisiae/metabolism Saccharomyceta; |
Notes: | "MedlineIto, Yoichiro Ishigami, Misa Hashiba, Noriko Nakamura, Yasuyuki Terai, Goro Hasunuma, Tomohisa Ishii, Jun Kondo, Akihiko eng Research Support, Non-U.S. Gov't 2022/06/04 Microb Biotechnol. 2022 Sep; 15(9):2364-2378. doi: 10.1111/1751-7915.14061. Epub 2022 Jun 3" |