Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract"Highly elevated atmospheric levels of volatile organic compounds in the Uintah Basin, Utah"    Next Abstract"Emissions of total volatile organic compounds and indoor environment assessment in dental clinics in Athens, Greece" »

J Air Waste Manag Assoc


Title:Evaluation of selected solid adsorbents for passive sampling of atmospheric oil and natural gas non-methane hydrocarbons
Author(s):Helmig D; Fangmeyer J; Fuchs J; Hueber J; Smith K;
Address:"Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, USA. Boulder A.I.R. LLC, Boulder, Colorado, USA. Institute of Inorganic and Analytical Chemistry, University of Muenster, Muenster, Germany. Department of Chemistry, University of York, York, UK"
Journal Title:J Air Waste Manag Assoc
Year:2022
Volume:20220207
Issue:3
Page Number:235 - 255
DOI: 10.1080/10962247.2021.2000518
ISSN/ISBN:2162-2906 (Electronic) 1096-2247 (Linking)
Abstract:"This project investigated passive adsorbent sampling of light (C(2)-C(5)) hydrocarbons which are sensitive tracers of fugitive emissions from oil and natural gas (O&NG) sources. Stronger adsorbent materials, i.e. Carboxen 1000 and Carboxen 1016, than those typically used in adsorbent sampling were considered. Experiments were conducted in laboratory and field settings using thermal desorption - gas chromatography analysis. Uptake of water vapor and system blanks were challenges inherent to the increased affinity of these adsorbents. Carboxen 1000 exhibited the best signal-to-noise ratio for the target compounds after optimizing conditioning parameters to reduce blanks, and by reducing the adsorbent mass loaded in the cartridge. This strategy reduced blanks to equivalent ambient air mole fractions of <0.05 nmol mol(-1) (ppb), and allowed determination of these O&NG tracers over three-day sampling intervals with a lower detection limit of >/=0.5-1 ppb. Linear VOCs uptake was observed in dry air. Water uptake was as high as 0.65 g(H2O) g(-1)(adsorbent) at relative humidity (RH) above approximately 75%. The water collection passivates adsorbent sites and competes with the uptake rates of VOCs; under the worst case relative humidity level of 95% RH, VOCs uptake rates dropped to 27-39% of those in dry air. This effect potentially causes results to be biased low when cartridges are deployed at high relative humidity (RH), including overnight, when RH is often elevated over daytime levels. Nonetheless, representative sampling results were obtained under ambient conditions during three field studies where cartridges were evaluated alongside whole air sample collection in canisters. Agreement varied by compound: Ethane and alkenes correlated poorly and could not be analyzed with satisfactory results; results for C(3)-C(5) alkanes were much better: i-butane correlated with R(2 )> 0.5, and propane, n-butane, i-pentane, and n-pentane with R(2) > 0.75, which demonstrates the feasibility of the passive sampling of these latter O&NG tracers. Implications: Oil and natural gas development has been associated with emissions of petroleum hydrocarbons that impact air quality and human health. This research characterizes and defines the application possibilities of solid adsorbent sampling for atmospheric passive sampling monitoring of low molecular weight volatile organic compounds (i.e. ethane through pentane isomers) that are most commonly emitted from natural gas drilling and well sites. The passive sampling of these pollutants offers a simple, low cost, and readily applicable monitoring method for assessing emissions and air quality impacts in the surroundings of oil and gas operations"
Keywords:*Air Pollutants/analysis *Air Pollution Environmental Monitoring/methods Ethane Humans Hydrocarbons/analysis Natural Gas Pentanes *Volatile Organic Compounds/analysis;
Notes:"MedlineHelmig, Detlev Fangmeyer, Jens Fuchs, Joshua Hueber, Jacques Smith, Kate eng Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. 2021/11/06 J Air Waste Manag Assoc. 2022 Mar; 72(3):235-255. doi: 10.1080/10962247.2021.2000518. Epub 2022 Feb 7"

 
Back to top
 
Citation: El-Sayed AM 2025. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2025 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 13-01-2025