Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous AbstractEssential oil of Chrysanthemum indicum L.: potential biocontrol agent against plant pathogen Phytophthora nicotianae    Next AbstractCharacterizing oxygenated volatile organic compounds and their sources in rural atmospheres in China »

PLoS One


Title:Defense Responses in Rice Induced by Silicon Amendment against Infestation by the Leaf Folder Cnaphalocrocis medinalis
Author(s):Han Y; Li P; Gong S; Yang L; Wen L; Hou M;
Address:"State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Changsha, 410128, China. College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China"
Journal Title:PLoS One
Year:2016
Volume:20160428
Issue:4
Page Number:e0153918 -
DOI: 10.1371/journal.pone.0153918
ISSN/ISBN:1932-6203 (Electronic) 1932-6203 (Linking)
Abstract:"Silicon (Si) amendment to plants can confer enhanced resistance to herbivores. In the present study, the physiological and cytological mechanisms underlying the enhanced resistance of plants with Si addition were investigated for one of the most destructive rice pests in Asian countries, the rice leaf folder, Cnaphalocrocis medinalis (Guenee). Activities of defense-related enzymes, superoxide dismutase, peroxidase, catalase, phenylalanine ammonia-lyase, and polyphenol oxidase, and concentrations of malondialdehyde and soluble protein in leaves were measured in rice plants with or without leaf folder infestation and with or without Si amendment at 0.32 g Si/kg soil. Silicon amendment significantly reduced leaf folder larval survival. Silicon addition alone did not change activities of defense-related enzymes and malondialdehyde concentration in rice leaves. With leaf folder infestation, activities of the defense-related enzymes increased and malondialdehyde concentration decreased in plants amended with Si. Soluble protein content increased with Si addition when the plants were not infested, but was reduced more in the infested plants with Si amendment than in those without Si addition. Regardless of leaf folder infestation, Si amendment significantly increased leaf Si content through increases in the number and width of silica cells. Our results show that Si addition enhances rice resistance to the leaf folder through priming the feeding stress defense system, reduction in soluble protein content and cell silicification of rice leaves"
Keywords:"Animals Enzymes/metabolism Lepidoptera/*physiology Malondialdehyde/metabolism Microscopy, Electron, Scanning Oryza/enzymology/metabolism/*parasitology Plant Leaves/metabolism Plant Proteins/metabolism Silicon/*metabolism;"
Notes:"MedlineHan, Yongqiang Li, Pei Gong, Shaolong Yang, Lang Wen, Lizhang Hou, Maolin eng Research Support, Non-U.S. Gov't 2016/04/29 PLoS One. 2016 Apr 28; 11(4):e0153918. doi: 10.1371/journal.pone.0153918. eCollection 2016"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 29-06-2024