Bedoukian   RussellIPM   RussellIPM   Piezoelectric Micro-Sprayer


Home
Animal Taxa
Plant Taxa
Semiochemicals
Floral Compounds
Semiochemical Detail
Semiochemicals & Taxa
Synthesis
Control
Invasive spp.
References

Abstract

Guide

Alphascents
Pherobio
InsectScience
E-Econex
Counterpart-Semiochemicals
Print
Email to a Friend
Kindly Donate for The Pherobase

« Previous Abstract[Attraction effect of main volatile components from tea shoots and flowers on Sphaerophoria menthastri (Diptera: Syrphidae) and Chrysopa septempunctata (Neuroptera: Chrysopidae)]    Next Abstract"Characterization of industrial odor sources in Binhai New Area of Tianjin, China" »

J Proteome Res


Title:Brain Membrane Proteome and Phosphoproteome Reveal Molecular Basis Associating with Nursing and Foraging Behaviors of Honeybee Workers
Author(s):Han B; Fang Y; Feng M; Hu H; Hao Y; Ma C; Huo X; Meng L; Zhang X; Wu F; Li J;
Address:"Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture, Chinese Academy of Agricultural Science , Beijing, China"
Journal Title:J Proteome Res
Year:2017
Volume:20170915
Issue:10
Page Number:3646 - 3663
DOI: 10.1021/acs.jproteome.7b00371
ISSN/ISBN:1535-3907 (Electronic) 1535-3893 (Linking)
Abstract:"The brain is a vital organ in regulating complex social behaviors of honeybees including learning and memory. Knowledge of how brain membrane proteins and their phosphorylation underlie the age-related behavioral polyethism is still lacking. A hitherto age-resolved brain membrane proteome and phosphoproteome were reported in adult worker bees from two strains of honeybee (Apis mellifera ligustica): Italian bee (ITB) and Royal Jelly bee (RJB), a line selected from ITB for increased RJ outputs over four decades. There were 1079 membrane protein groups identified, and 417 unique phosphosites were located in 179 membrane protein groups mainly phosphorylated by kinase families of MAPKs, CDKs, and CK2. Age-resolved dynamics of brain membrane proteome and phosphoproteome are indicative of their correlation with the neurobiological requirements during the adult life of honeybee workers. To stimulate immature brain cell development in newly emerged bees (NEBs), the enriched functional classes associated with metabolism of carbohydrates, nucleosides, and lipids by the up-regulated proteins suggest their enhanced role in driving cell maturity of the brain. In nurse bees (NBs) and forager bees (FBs), a higher number of membrane proteins and phosphoproteins were expressed as compared with in the young stages, and the enriched signal-transduction-related pathways by the up-regulated proteins suggest their significances in sustaining the intensive information processing during nursing and foraging activities. Notably, RJB has shaped unique membrane proteome and phosphoproteome settings to consolidate nursing and foraging behaviors in response to decades of selection underpinning the elevated RJ yields. In RJB NBs, the enriched pathways of phosphatidylinositol signaling and arachidonic acid metabolism indicate a stronger olfaction sensation in response to larval pheromone stimulation. In RJB FBs, the enriched pathways related to signal processing such as SNARE interactions in vesicular transport, wnt signaling, TGF-beta signaling, and taurine and hypotaurine metabolism suggest an enhanced nerve sensitivity to prime the stronger tendency to pollen collection. Our data gain a novel insight into membrane proteome and phosphoproteome-driven cerebral regulation of honeybee behaviors, which is potentially useful for further neurobiological investigation in both honeybees and other social insects"
Keywords:"Animals Bees Behavior, Animal/*physiology Brain/*metabolism/physiology Lipid Metabolism/genetics Membrane Proteins/genetics/metabolism Pheromones/genetics/metabolism Phosphoproteins/*genetics/metabolism Proteome/*genetics/metabolism behavior brain honeybe;"
Notes:"MedlineHan, Bin Fang, Yu Feng, Mao Hu, Han Hao, Yue Ma, Chuan Huo, Xinmei Meng, Lifeng Zhang, Xufeng Wu, Fan Li, Jianke eng Research Support, Non-U.S. Gov't 2017/09/08 J Proteome Res. 2017 Oct 6; 16(10):3646-3663. doi: 10.1021/acs.jproteome.7b00371. Epub 2017 Sep 15"

 
Back to top
 
Citation: El-Sayed AM 2024. The Pherobase: Database of Pheromones and Semiochemicals. <http://www.pherobase.com>.
© 2003-2024 The Pherobase - Extensive Database of Pheromones and Semiochemicals. Ashraf M. El-Sayed.
Page created on 26-12-2024